APPENDIX A – COURSE SYLLABI

INCLUDE ONLY COURSE SYLLABI FOR THE DISCIPLINE-SPECIFIC COURSES OF THE PROGRAM FOR READINESS REVIEW

Code	IMC101	Prerequisites	None
Yam	Mechatronics Engineering Seminar	Co-requisites	None

Credits	Contact Hours		
00	12		
Categorization of credits			
Math and basic science			
Engineering topic	Х		
other			

Instructor's course name: Irvi

Irvin E. Cedeño

Text-book Cedeño, I. (2016). Prontuario Reforma 2016. Manuscrito inédito. Other supplemental materials

Instituto Tecnológico de Santo Domingo, Information Technology Department (2017) Institutional Statistics Report [Periodic report]. Santo Domingo: Author.

Instituto Tecnológico de Santo Domingo (2014) Regulation of the Center for Innovation and Entrepreneurship. Santo Domingo: INTEC.

Instituto Tecnológico de Santo Domingo (2012) Student Academic Mobility Regulation.

https://www.intec.edu.do/downloads/documents/institucionales/reglamentos/reglamento-movilidad-estudiantil.pdf

Instituto Tecnológico de Santo Domingo. (2016). Curriculum Reform 2015-2016. Santo Domingo: INTEC.

Description

The Mechatronics Engineering Seminar is the students' first contact with topics related to the career and introduces them to its fundamental concepts. In this, the motivations of the students to have selected the career are explored, emphasis is placed on the identity of the Mechatronics Professional, the history, the present and the future of it, both nationally and internationally, and the professional work of the graduates.

The infrastructures available to the institution and career for the teaching of students are also shown and important details related to the study plan, transversal axes, concentrations, mobility programs and entrepreneurship are pointed out.

Type of course	⊠ Required
Type of course	□ Elective

Specific goals for the course			
Outcomes of	1. Show openness and tolerance to new opinions, ideas and		
instruction concepts in dialogue with peers and teachers.			

	 Show tranquility and preparation in the presentation of their proposed solutions to the problem presented. Prepare didactic documentation and expose concepts through the visual information technology resources provided by the study 		
	center.4. Expose problems and solutions of a mechatronic nature, attached to the problem solving method.		
Student outcomes	 SO1. Identify, formulate, and solve complex engineering problems by applying the principles of engineering, science, and mathematics. SO3. Communicate effectively with a variety of audiences. SO5. Work effectively in teams whose members collectively provide leadership, create a collaborative and inclusive environment, set goals, plan tasks, and meet objectives. 		

topics
Unit I. Introduction
Unit II. Mechatronics and INTEC
Unit III. Facilities
Unit IV. Crosscutting
Unit V. Student Committee
Unit VI. Mobility
Unit VII. Entrepreneurship
Unit VIII. professional work
Unit IX. Deliverable

Code	IMC102	Prerequisites	IMC101
Name	Hands-On Program I	Co-requisites	None

Credits	Contact Hours		
00	twenty		
Categorization of credits			
Math and basic science			
Engineering topic	Х		
other			

. . 1 1

Ivan E. Jimenez

text-book Agudo Vicente, B., Guerrero Valenzuela, M., & Hernandis Ortuño, B. (2014). Estudio comparativo de las acciones a considerar en el proceso de diseño conceptual desde la ingeniería y el diseño de productos. Ingeniare. Chilean Engineering Magazine, 22(3), pp. 398-411. Taken on October 7, 2017 from

http://www.scielo.cl/pdf/ingeniare/v22n3/art10.pdf

Gil, F., Rico, R., & Sánchez-Manzanares, M. (2008). Eficacia de Equipos de Trabajo. Papers of the Psychologist, 29(1), pp. 25-31

Selinger, C. (2004). Stuff You Don't Learn in Engineering School: Skills for Success in the Real World. Wiley-IEEE Press.

Cardona, P., & Wilkinson, H. (2006). Teamwork. Occasional Paper, 07/10. Retrieved October 1, 2017 from http://www.iese.edu/research/pdfs/op-07-10.pdf

Other supplemental materials

Charyton, C. (2015). Creative Engineering Design: The Meaning of Creativity and Innovation in Engineering. In: Charyton C. (eds) Creativity and Innovation Among Science and Art. Springer.

Chicago Architecture Foundation (2016). Discover Design Handbook. Retrieved from: https://www.discoverdesign.org/handbook

Harvard BusinessEssentials. (2004). Project management: essential skills to stay on budget and meet deadlines. Deust Editions.

Description

This is the first in a series of follow-up assignments in the Hands-On program. It is designed to guide Mechatronics Engineering students towards critical thinking regarding the design of their projects and to understand the benefits and conditions of teamwork. For this, the contents were organized in a logical and coherent way, starting with the analysis of teamwork, followed by the evaluation of the design and search for improvements, and the research and project unit concludes.

Type of course	⊠ Required
Type of course	□ Elective

Specific goals for the course			
Outcomes of	1. Identify the qualities of them and their team members using		
instruction	introspection as a tool.		
	2. Establish the learning needs required for the project based on the		
	discussion of the team's aptitude limitations.		

	 Compare the characteristics of the different components of their design, based on the established design requirements. Identify potential problems in their design and project through discussion of observations and investigations. Propose solutions to problems based on the shared knowledge of their team. Evaluates solutions to problems through the consensus of their team.
Student outcomes	SO2. Apply the engineering design process to produce solutions that meet specific needs, taking into account public health, safety and well-being, as well as global, cultural, social, environmental and economic factors. SO5. Work effectively in teams whose members together provide leadership, create a collaborative and inclusive environment, set goals, plan tasks and meet objectives.

topics

Unit I. Teamwork Unit II. Project Definition Unit III. Search for Alternatives Unit IV. Project Design

Code	IMC103	Prerequisites	IMC102
Name	Hands-On 2 Program	Co-requisites	None

Credits	Contact Hours		
00	20		
Categorization of credits			
Math and basic science			
Engineering topic	Х		
Other			

Instructor's course name: Iván E. Jiménez

Text book

Jiménez, I. (2017). Hands-On Final Report Guide. Instituto Tecnológico de Santo Domingo.

Joffré Encinas, J. E. (2018). Guide for the Writing of Technical Reports. Retrieved from

http://www.ingenieria.uaslp.mx/Metalurgia/Documents/APUNTES/Gu%C3%ADa% 20para%20escrito%20reporte.pdf

Sarli, RR, González, SI, & Ayres, N. (2015). Análisis FODA. Una herramienta necesaria. (Spanish). Revista de La Facultad de Odontología. (Spanish) Universidad Nacional de Cuyo, 9(1), 17. Retrieved from

http://search.ebscohost.com/login.aspx?direct=true&db=edo&AN=109277247&lang=es&site=eds-live

Other supplementary materials

Dym, CL, Agogino, AM, Eris, O., Frey, DD, & Leifer, LJ (2005). Engineering design thinking, teaching, and learning. Journal of engineering education, 94(1), 103-120. Harvard Business Essentials. (2004). Project management: essential skills to stay on budget and meet deadlines. Barcelona: Deusto Editions

Laura Perez Granada. (2018). El aprendizaje basado en problemas como estrategia didáctica en educación superior. Voces de La Educación, Vol 3, Iss 6, Pp 155-167 (2018), (6), 155. Retrieved from https://doaj.org/article/6ebdfa03fe164fb0a5af047bcf5155f9?

Lledó, P., & Rivarola, G. (2007). Projects management. Pearson Education.

Selinger, C. (2004). Stuff You Don't Learn in Engineering School: Skills for Success in the Real World. Hoboken, NJ: Wiley -IEEE Press

Torres Rodriguez, RS, & Ramirez, F. (2018). Buenas Prácticas de Ingeniería (GEP's). Instituto Tecnológico de Colima.

Jiménez, I. (2017). Rúbrica Evaluación Desempeño Equipo. Instituto Tecnológico de Santo Domingo.

Riquelme Leiva, Matias (2016, December). SWOT: Matrix or SWOT Analysis – An essential tool for the study of the company. Santiago, Chile. Retrieved from http://www.analisisfoda.com/

Description

This course is focused on analyzing the construction and testing process of the first robot for the Hands-On program, implementing basic analysis tools and generating reports based on the team's observations and conclusions, using mostly retrospect to evaluate the performance of its robot. team during the project.

Type of course	⊠ Required
Type of course	□ Elective

Specific goals for the course			
Outcomes of	1. Analyze the construction and testing process of the project,		
instruction	implementing basic analysis tools.		
	2. Compare the results of your project against the proposed criteria		
	and requirements to reflect on the validity of your design and		
	project execution.		
	3. Evaluate your team's performance during the project using		
	observation and retrospect rubrics.		
	4. Report the results of their team's work at the different stages of		
	the project, freely but clearly and concisely.		
	5. Generate a basic technical report with an adequate structure and		
	format that serves as a reference both for team members in their		
	future projects and for people outside the project.		
Student	SO1. Identify, formulate, and solve complex engineering		
outcomes	problems by applying the principles of engineering, science, and		
	mathematics.		
	SO2. Apply the engineering design process to produce solutions		
	that meet specific needs taking into consideration public health,		
	safety and welfare, as well as global, cultural, social,		
	environmental and economic factors.		
	SO5. Function effectively in a team whose members together		
	provide leadership, create a collaborative and inclusive		
	environment, set goals, plan tasks, and meet objectives.		

Unit I. Analysis and Expected Results Unit II. Tests Setup Unit III. Testing and Results Unit IV. Result Analysis Unit V. Result Documentation

Code	IMC204	Prerequisites	IMC103
Name	Hands-On Program 3	Co-requisites	None

Credits	Contact Hours	
00	22	
Categorization of credits		
Math and basic science		
Engineering topic	Х	
Other		

Ivan E. Jimenez

Text book

Nagel, R. L., Pierrakos, O., & Nagel, J. K. (2013). A versatile guide and rubric to scaffold and assess engineering design projects. In ASEE Annual Conference & Exposition.

Kim, C. (2012). Project Proposal.

Other supplemental materials

Cardona, P., Wilkinson, H. (2006). Teamwork. Occasional Paper, 07/10. Retrieved on October 1, 2017 from http://www.iese.edu/research/pdfs/op-07-10.pdf

Delgado, A., Mesquida, A.L., & Mas, A. (2014). Utilización de Trello para realizar el seguimiento del aprendizaje de equipos de trabajo. Jornadas de Enseñanza Universitaria de la Informática (20es: 2014: Oviedo).

Dym, CL, Agogino, AM, Eris, O., Frey, DD, & Leifer, LJ (2005). Engineering design thinking, teaching, and learning. Journal of Engineering Education, 94(1), 103-120.

Encuestas de Opinión (2011). Como presentarse para hacer una encuesta. http://encuestasdeopinion.blogspot.com/2011/09/como-presentarse-para-make-una.html

Haik, Y., & Shahin, TM (2011). Engineering design process (2nd ed.). Stanford, USA: CENGAGE Learning, 2011. https://www.researchgate.net/publication/235959233

Harvard BusinessEssentials. (2004). Project management: essential skills to stay on budget and meet deadlines. Barcelona: Deusto Editions

Lledó, P., & Rivarola, G. (2007). Gestión de proyectos. Pearson Education.

OBS Business School. What is a Gantt chart and what is it for? https://www.obs-edu.com/en/blog-project-management/gantt-charts/what-is-a-gantt-chart-and-what-is-it-for

Retos Directivos (2015). Priorizar tareas, clave para la buena gestión de nuestro tiempo. https://retos-directivos.eae.es/priorizar-tareas-clave-para-la-buena-gestion-de-nuestro-tiempo/

QuestionPro. Cree una encuesta exitosa en 7 pasos. https://www.questionpro.com/blog/create-a-successful-survey-with-questionpro-in-7-steps/

Description

In this course, students are challenged to explore and implement tools and methods to help them organize their Sumo robot construction project in a way that improves on the experience and results of the previous year's Monster project. They also continually work to mature their team and their interactions in order to apply principles of the engineering design process in finding solutions to the challenges presented by the new project. Similarly, they delve into project management issues and discover their role in the Hands-On program community.

Type of course	🖾 Required
Type of course	□ Elective

Specific goals for the course			
Outcomes of	1. Describe the project as a problem to be tackled with different		
instruction	key parts to attack and combine them in the form of project objectives with the needs, goals and scopes defined by the team. 2. Propose activities to achieve the team's objectives, their execution priority and duration, according to their capabilities. 3. Feed a document that serves as a reference to the team where the proposed design and management of your team is discussed and justified.		
	 4. Apply different management and design tools with their team and discuss their use to choose alternatives suitable for his needs. 5. Performs a risk analysis to anticipate future complications of their project and propose adjustments and ways to handle them, according to their priorities. 6. Propose ways to support other teams and the community based on the needs of the project and their experiences. 		
Student outcomes	SO2. Apply the engineering design process to produce solutions that meet specific needs considering public health, safety and welfare, as well as global, cultural, social, environmental and economic factors. SO4. Recognize ethical and professional responsibilities in engineering situations and makes informed judgments considering the impact of engineering solutions in global, economic, environmental, and social contexts. SO5. Function effectively in a team whose members together provide leadership, create a collaborative and inclusive environment, set goals, plan tasks, and meet objectives.		

Topics

Unit I. Mission Design Unit II. System Functions Unit III. Alternative Selection Unit IV. Concept Building Unit V. Project Planning and Documentation

Code	IMC205	Prerequisites	IMC204
Name	Hands-On Program 4	Co- requisites	None

Credits	Contact hours		
00	twenty		
Categorization of credits			
Math and basic science			
Engineering topic	Х		
Other			

Ivan E. Jimenez

Text book

Aymes, G.L. (2012). Pensamiento crítico en el aula. Docencia e Investigación: revista de la Escuela Universitaria de Magisterio de Toledo, 37(22), 41-60.

Kuster, J. et al. (2015). Project management handbook.

Haik, Yousef & Shahin, Tamer (2010). Engineering Design Process.

Nagel, R. L., Pierrakos, O., & Nagel, J. K. (2013). A versatile guide and rubric to scaffold and assess engineering design projects.

Other supplementary materials

Alda, FL, & Hernandez, MD (1998). Resolución de problemas. Cuadernos de Pedagogía, 265(31), 28-32.

Guitart, M. E. (2011). Del "Aprendizaje Basado En Problemas" (ABP) al "Aprendizaje Basado En La Acción" (ABA). Claves para su complementariedad e implementación. REDU. Revista De Docencia Universitaria, 9(1), 91. doi:10.4995/redu.2011.6182

León Urquijo, A. P., Risco del Valle, E., & Alarcón Salvo, C. (2014). Estrategias de aprendizaje en educación superior en un modelo curricular por competencias. Revista de la educación superior, 43(172), 123-144.

Prieto, J. H. P. (2012). Estrategias de enseñanza-aprendizaje. Pearson educación. Ugalde-Albístegui, M., & Zurbano-Bolinaga, V. (2009). Creatividad e innovación: Nuevas ideas, viejos principios. DYNA-Ingeniería e Industria, 84(2).

Description In this course, students find themselves with the need to find an adequate and effective way to transmit the experience accumulated during their first two years to the other teams participating in the Hands-On Program. The ability of each student to generate collaboration-oriented documentation through the analysis of their learning process and the generation of information and activities to share the things learned with the community is also put into perspective.

Type of course

☑ Required□ Elective

Specific goals for the course			
Outcomes of	1. Incorporate tests and analysis in the planning of their		
instruction	implementation process to verify the effectiveness of the design against the requirements that govern it.		
	2. Document their design and learning processes to communicate		
	their results and problems in a way that allows analysis by others		
	in the class.		

	3. Generate collaboration-oriented documentation based on analysis of the effectiveness of their design process and issues resolved during the project.	
Student	SO3. Communicate effectively with a variety of audiences.	
outcomes	SO4. Recognize ethical and professional responsibilities in engineering situations and makes informed judgments considering the impact of engineering solutions in global, economic, environmental, and social contexts.	

Unit I. Testing and Expected Results Unit II. Result Analysis and Documentation Unit III. Design Refinement Unit IV. Results Communication

Code	IMC328	Prerequisites	IMC205
Name	Hands-On Program 5	Co- requisites	None

Credits	Contact hours	
00	20	
Categorization of credits		
Math and basic science		
Engineering topic	Х	
Other		

Ivan E. Jimenez

Text book

Haik, Y., Shahin, T. (2010). Engineering Design Process.

Kuster, J. et al. (2015). Project management handbook (1st ed., Management for Professionals). Berlin: Springer. doi:10.1007/978-3-662-45373-5

Master of Project Academy. (2018, June 08). 7 Elements of the Six Sigma Project Charter. Retrieved from https://blog.masterofproject.com/six-sigma-project-charter/ McBride M. (2016) Project Management Basics: How to manage your project with checklists. Berkeley, CA: Press. doi : 10.1007/978-1-4842-2086-3

Nagel, R. L., Pierrakos, O., Nagel, J. K. (2013). A versatile guide and rubric to scaffold and assess engineering design projects.

Other supplementary materials

Bilbao & Bejarano Architects. (2014, November 04). Gantt diagram. Retrieved from https://www.youtube.com/watch?v=oDFbPhmgqLQ

DecisionSkills. (2014, May 22). SMART Goals - Quick Overview. Retrieved from https://www.youtube.com/watch?v=1-SvuFIQjK8

Lean Lab. (2017, December 10). What is a Project Charter. Retrieved from https://www.youtube.com/watch?v=yJQ8tFVbx3g

ProjectLibre. (nd). ProjectLibre Open Source. Retrieved from http://www.projectlibre.com/product/projectlibre-open-source

Whitt P. (2015) Project Planning, Inventory Management, and Time Tracking Software. In: Pro Freeware and Open Source Solutions for Business. Berkeley, CA: press

Description In this course, students formalize their knowledge of project planning and management, to effectively and realistically design the construction project for the latest robot in the Hands-On program. The development of the ability to plan and manage projects is worked, mainly, through the analysis and evaluation of their activities in previous projects and the comparison with methods and tools used professionally for project management.

Type of course	⊠ Required
Type of course	□ Elective

Specific goals for the course		
Outcomes of 1. Define, together with their team, appropriate and realistic		
instruction objectives, roles and communication methods for the effectiveness of their project.		

	2. Define the detailed phases of their project structure.	
	3. Develop a project management plan based on the details of the	
	planning phase.	
	4. Use digital tools to organize their project.	
Student	SO2. Apply and use the engineering design process to produce	
outcomes	solutions that meet specific needs, taking into consideration public	
	health, safety, and welfare, as well as global, cultural, social,	
	environmental, and economic factors.	
	SO3. Communicate effectively with a variety of audiences.	
	SO5. Function effectively in a team whose members together	
	provide leadership, create a collaborative and inclusive	
	environment, set goals, plan tasks, and meet objectives.	

	Topics	
Unit I. Project Constitution		
Unit II. Design Solutions		
Unit III. Work Definition		
Unit IV. Project Control		

Code	IMC329	Prerequisites	180 credits approved
Name	Computer Assisted Design and Manufacturing	Co-requisites	IMC329L

Credits	Contact hours	
04	40	
Categorization of credits		
Math and basic science		
Engineering topic	Х	
Other		

Solandy Sanchez

Text book

Fitzpatrick, M. (2013). Machining and CNC technology. McGraw-Hill. Overby, A. (2011). CNC machining handbook. McGraw-Hill.

Other supplementary materials

CNC Software Inc. (2010). Basic 3D Machining. Retrieved from http://eng.auburn.edu/~griffgj/training/Basic 3D Machining.pdf CNC Software, Inc. (2018). Mastercam Basics Tutorial. http://colla.lv/wpcontent/uploads/2018/07/Mastercam-Basics-Tutorial.pdf Evans, K. (2016). Student workbook to accompany programming of CNC machines, fourth edition. Industrial Press. Radhakrishnan, P., Subramanyan, S., & Raju, V. (2014). CAD/CAM/CIM. Daryaganj : New Age International.

Description This course aims to introduce the basic concepts of computer-aided design and manufacturing to improve quality, reduce costs and shorten design and part production times. Computer Aided Design and Manufacturing (CAD/CAM) is a discipline that studies the use of computer systems as a support tool in all the processes involved in the design and manufacture of any type of product.

Type of course	⊠ Required
Type of course	□ Elective

Specific goals for the course		
Outcomes of	1. Use the appropriate tools to solve the problems presented	
instruction	according to the required need.	
	2. Use different techniques for solving problems that arise in the	
	development of the subject.	
Student	SO1. Identify, formulate, and solve complex engineering	
outcomes	problems by applying the principles of engineering, science, and	
	mathematics.	

l opics	
Unit I. Introduction to CAD/CAM	
Unit II. CAD/CAM systems	
Unit III. Basic Functions CAM Software	
Unit III. Basic Functions CAM Software	

Unit IV. Advanced Features CAM Software

Code	IMC329L	Prerequisites	180 approved credits
Name	Computer Assisted Design and Manufacturing Laboratory.	Co-requisites	IMC329

Credits	Contact Hours	
01	40	
Categorization of credits		
Math and basic science		
Engineering topic	Х	
Other		

Deyslen Mariano Hernandez

Text book

INTEC - Learning Resources and Media (2014). CNC Milling Tutorial, (part 1) [video]. Recovered at https://www.youtube.com/watch?v=HxpzwhUbwbQ INTEC - Learning Resources and Media (2014). CNC Milling Tutorial, (part 2) [video]. Recovered at https://www.youtube.com/watch?v=5ua2A3TAjKg Haas Automation Inc. (2014). Vertical Mill Operator's Manual. Retrieved from http://diy.haascnc.com/sites/default/files/Locked/Manuals/Operator/2014/Mill/Transl

ated/
Mill_Operators_Manual_96-ES8200_Rev_A_Spanish_January_2014.pdfProductivityInc. (2015). Haas CNC Mill Programming. Retrieved from
http://microfluidics.cnsi.ucsb.edu/tools/Haas_SMM/Haas%20Mill%20Programming
%20Manual.pdf

Other supplemental materials

Overby A. (2011). CNC Machining Handbook. New York: McGraw Hill.

Description

It is a subject oriented to the development of skills necessary for the visualization and development of designs that can serve to offer solutions in the different fields of professional practice.

The student will know: the definitions of CAD, CAM, CAE, geometric modeling, assemblies and tolerances, rapid prototype design, finite element method, diagnostic systems, static, dynamic, magnetic and thermal analysis.

Type of course	⊠ Required
Type of course	□Elective

Specific goals for the course			
Outcomes of instruction	 Performs machining with a CNC machine choosing the most appropriate technique to meet the needs of the parts or requirements of the mechanism. Manipulates different functions of the machining software for the elaboration of parts or components, selecting the most appropriate ones for the mechanism it will perform. 		

	3. Distinguishes and uses the different techniques and good practices of machining with a CNC machine to guarantee a quick solution to the needs of parts or components of a mechanism.	
Student outcomes	SO2. Apply and use the engineering design process to produce solutions that meet specific needs, taking into consideration public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.	

Unit I. Geometric Foundations. Unit II. CNC programming Unit III. Simulation of Parts Unit IV. Machining of Parts.

Code	IMC330	Prerequisites	180 approved credits
Name	Design of Mechatronic Systems	Co-requisites	None

Credits	Contact hours	
04	44	
Categorization of credits		
Math and Basic Science		
Engineering Topic	Х	
Other		

Instructor's course name:	Irvin E. Cedeno De los Santos

Textbook

Álvarez Pulido, M. (2004). Controladores Lógicos.

Automation Direct. (2017). PLC Handbook.

Daneri P. (2008). Automatización y Control Industrial.

Mandano P., E; Marcos A., J., & Fernández S., C. (2009). Autómatas Programables y Sistemas de Automatización.

Terzi, E. Regber, H. Loffler, C. & Ebel, F. (1999). Controles Lógicos Programables. Other Supplementary Materials

Bradley, DA, & Seward, D. (2000). Mechatronics and the Design of Intelligent Machines and Systems. CRC Press.

Haik, Y. (2016). Engineering Design Process (3rd ed.). CENGAGE Learning. Popovic, D., & Vlacic, L. (1999). Mechatronics in Engineering Design and Product Development. Marcel Dekker Inc.

Shetty, D., & Kolk, R. (2011). Mechatronic System Design (2nd ed.). CENGAGE Learning.

Ulrich, K.T., & Eppinger, S.D. (2016). Product Design and Development (6th ed.) McGraw-Hill.

Description

Design of Mechatronic Systems is a subject oriented to learning the engineering design process, applied to the development of intelligent devices that can carry out tangible operations, autonomously and efficiently; where students learn the necessary design tools to achieve a solution that meets existing needs, investigate the state of technology, exercise the formation of work teams, communicate their ideas and project management.

Type of course	⊠ Required
Type of course	□ Elective

Specific goals for the course			
Outcomes of instruction	 Describe the necessary steps for the development of the engineering design process. Identify the good practices used in the design of engineering solutions. Select appropriate procedures and components, taking into account the compatibility, availability, reliability of these and between them. 		

 ills, identifying strengths and weaknesses, in view of the quirements for the development of a mechatronics project. Interact with team members and develops a solution proposal. Perform searches for technologies, materials, processes and pre, which allow them to develop a proposal for a solution to
e identified needs.
 D2. Apply the engineering design process to produce solutions at meet specific needs taking into account public health, safety d welfare, as well as global, cultural, social, environmental and onomic factors. D3. Communicate effectively with a variety of audiences. D4. Recognize ethical and professional responsibilities in gineering situations and makes informed judgments considering e impact of engineering solutions in global, economic, vironmental, and social contexts.

	the impact of engineering solutions in global, economic,	
environmental, and social contexts.		
	Topics	
Unit I. Introduction	n to the Mechatronics Engineering Design Process	
Unit II. Market research		
Unit III. Development of design specifications		
Unit IV. Concept Development		
Unit V. Evaluation and Selection of Concepts		
Unit VI. Detailed Design Development		
Unit VI. Manufacture		
Unit VII. Prototype	2	

Code	IMC330L	Prerequisites	180 approved credits
Name	Mechatronic Systems Design Laboratory	Co-requisites	IMC330

Credits	Contact hours	
01	20	
Categorization of credits		
Math and Basic Science		
Engineering Topic	Х	
Other		

Instructor's course name: Edwin A. Sanchez Camilo

Textbook

Kuster, J. et al. (2015). Project management handbook (1st ed., Management for Professionals). Berlin: Springer. doi:10.1007/978-3-662-45373-5

Other Supplementary Materials

McBride M. (2016) Project Management Basics: How to manage your project with checklists. Berkeley, CA: Press. doi : 10.1007/978-1-4842-2086-3

Bilbao & Bejarano Architects. (2014, November 04). Gantt diagram. Retrieved from https://www.youtube.com/watch?v=oDFbPhmgqLQ

Decision Skills. (2014, May 22). SMART Goals - Quick Overview. Retrieved from https://www.youtube.com/watch?v=1-SvuFIQjK8

Master of Project Academy. (2018, June 08). 7 Elements of the Six Sigma Project Charter. Retrieved from https://blog.masterofproject.com/six-sigma-project-charter/ Project Libre. (nd). Project Libre Open Source. Retrieved from http://www.projectlibre.com/product/projectlibre-open-source

Whitt P. (2015) Project Planning, Inventory Management, and Time Tracking Software. In: Pro Freeware and Open Source Solutions for Business. Berkeley, CA: press

Description

Design of Mechatronic Systems is a subject oriented to learning the engineering design process, applied to the development of intelligent devices that can carry out tangible operations, autonomously and efficiently; where students learn the necessary design tools to achieve a solution that meets existing needs, investigate the state of technology, exercise the formation of work teams, communicate their ideas and project management.

Type of course	⊠ Required
Type of course	□ Elective

Specific goals for the course		
Outcomes of	1. Organize the design process into logical steps to obtain a work	
instruction	plan.	
Student	SO2. Apply and use the engineering design process to produce	
outcomes	solutions that meet specific needs, taking into consideration	
	public health, safety, and welfare, as well as global, cultural,	
	social, environmental, and economic factors.	

Topics
Unit I. Project Management Cycle
Unit II. Problem Statement
Unit III. Objectives
Unit IV. Project Constitution
Unit V. Proposal for solutions
Unit VI. Workplan
Unit VII. Work Planning
Unit VIII. Project monitoring
Unit IX. Briefcase

Code	IMC331	Prerequisites	INE377 INE377L 180 approved credits
Name	Industrial Instrumentation	Co-requisites	IMC331L

Credits	Contact hours	
04	40	
Categorization of credits		
Math and Basic Science		
Engineering Topic	Х	
Other		

Edwin Sanchez

Textbook

Bolton, W. (2015). Mechatronics: Electronic control systems in mechanical and electrical engineering.

Creus, A. (2011). Industrial instrumentation. (8th Edition). Alphaomega.

Fraden, J. (2016). Handbook of Modern Sensors. (5th Edition). Springer

Rockwell Automation, Inc., Allen-Bradley. (2013). Process Safety Manual 1:

Functional Safety in the Process Industry. (Publication SAFEBK-RM003A-ES-P).

Rockwell Automation, Inc., Allen-Bradley. (2011). Safebook 4: Safety System for Industrial Machinery. (Publication SAFEBK-RM002B-EN-P)

other supplementary materials

De Silva, C. (2005) Mechatronics an Integrated Approach. CRC Press.

Rockwell Automation. (1999). Fundamentals of Sensing Training Manual. FSM-900. Rockwell Automation - Allen Bradley.

Rockwell International Corporation (1998) Application Data. Industrial Automation Wiring and Grounding Guidelines. (Publication no. 1770-4.1)

The International Society of Automation (1991) Instrument Loop Diagram (Standard ISA-5.4-1991).

The International Society of Automation (1992) Instrumentation Symbols and Identification (Standard ISA-5.1-1984, R1992).

Description This subject aims to provide concepts related to the static and dynamic characteristics of industrial measurement instruments. It will be based on the design principle of plans based on international regulations, as well as the operation of sensors and actuators.

Type of course	☑ Required□ Elective
----------------	---

	Specific goals for the course
Outcomes of	1. Justifies the use of technologies and their applications in designs,
instruction	based on national and international regulations.
	2. Outlines plans for various industrial contexts, integrating basic
	electrical knowledge and circuits.
	3. Designs electrical diagrams and instrumentation planning using
	specialized software.

	4. Models the operating principle of industrial sensors using knowledge acquired in previous subjects.
Student outcomes	SO3. Communicate effectively with a variety of audiences. SO4. Recognize ethical and professional responsibilities in engineering situations and makes informed judgments considering the impact of engineering solutions in global, economic, environmental, and social contexts.

Unit I. Introduction to the ISA Instrumentation regulations Unit II. Standardized wiring and connectivity of industrial instrumentation Unit III. General characteristics of the sensors Unit IV. Industrial presence sensors Unit V. Industrial condition sensors Unit VI. Final elements and interfaces Unit VII. Instrumentation and control part I Unit VIII. Instrumentation and control part II Unit IX. Introduction to machinery safety Unit X. Modern instrumentation techniques

Code	IMC331L	Prerequisites	INE377 INE377L 180 approved credits
Name	Industrial Instrumentation Laboratory	Co-requisites	IMC331

Credits	Contact hours	
01	20	
Categorization of credits		
Math and Basic Science		
Engineering Topic	Х	
Other		

m .1 1

Instructor's course name:

Г

Deyslen Mariano Hernandez

Textbook
Rockwell Automation. (2017). Technical Data of Limit Switches. Retrieved from
http://literature.rockwellautomation.com/idc/groups/literature/documents/td/limit-
td001en-p.pdf
Rockwell Automation. (2017). Technical Data of Capacitive Proximity Sensors.
Retrieved from
http://literature.rockwellautomation.com/idc/groups/literature/documents/td/875c-
td001en-p.pdf
Rockwell Automation. (2017). Technical Data of Inductive Proximity Sensors.
Retrieved from
http://literature.rockwellautomation.com/idc/groups/literature/documents/td/prox-
td001en-p.pdf
Rockwell Automation. (2017). Installation instructions for photoelectric sensors.
Retrieved from
http://literature.rockwellautomation.com/idc/groups/literature/documents/in/9000-
in002 -en-p.pdf
Rockwell Automation. (2017). Ultrasonic Sensor Installation Instructions. Retrieved
from
http://literature.rockwellautomation.com/idc/groups/literature/documents/in/873c-
in001en-p.pdf
Other supplementary materials
Helmich J. (2008). Festo Compact Workstation Manual. Germany. ADIRO.
Rockwell Automation. (2017). Lockout Interlock Switch Installation Instructions.
Retrieved from
http://literature.rockwellautomation.com/idc/groups/literature/documents/in/mtgd2-
in001 -en-p.pdf
Rockwell Automation. (2017). Installation instructions for fiber optic sensors.
Retrieved from
http://literature.rockwellautomation.com/idc/groups/literature/documents/in/45fvl-
in001en-p.pdf
Yings Electric. (2017). Rotary Encoders. Retrieved from
http://yingselectric.com/product_show.asp?id=424

Description

This laboratory aims to make students aware of the most common instrumentation devices found in both national and international industrial environments.

Type of course	⊠ Required
Type of course	□ Elective

	Specific goals for the course	
Outcomes of	1. Distinguishes and uses the different types of sensors	
instruction	standardized for the industrial environment to guarantee a solution	
	that meets the requirements of the control system.	
	2. Classify and select industrial sensors according to your	
	application to meet the requirements of the control system.	
	3. Uses industrial sensors to meet specific requirements in	
	industrial facilities.	
Student	SO2. Apply and use the engineering design process to produce	
outcomes	solutions that meet specific needs, taking into consideration	
	public health, safety, and welfare, as well as global, cultural,	
	social, environmental, and economic factors.	
	SO3. Communicate effectively with a variety of audiences.	

TopicsUnit I. General Information.Unit II. Limit SwitchesUnit III. Inductive DetectorsUnit IV. Capacitive & Ultrasonic DetectorsUnit V. Photoelectric SensorsUnit VI. Reflective SensorsUnit VII. Security SensorsUnit VIII. Encoders

Code	IMC337	Prerequisites	IMC205
Name	Hands-On Program 6	Co-requisites	None

Credits	Contact Hours	
00	20	
Categorization of credits		
Math and basic science		
Engineering topic	Х	
Other		

Ivan E. Jimenez

Text book

Jiménez, I. (2020). Descubriendo el COH.

Jiménez, I. (2020). Inducción a Hands-On.

Jiménez, I. (2017). Reglamento General.

Kuster, J. et al. (2015). Project management handbook (1st ed., Management for Professionals). Springer. doi:10.1007/978-3-662-45373-5

Nagel, R. L., Pierrakos, O., & Nagel, J. K. (2013). A versatile guide and rubric to scaffold and assess engineering design projects.

Other supplemental materials

Bados, A., & Garcia, E. (2014). Resolución de problemas. Universitat de Barcelona. http://deposit.

ub.edu/dspace/bitstream/2445/54764/1/Resoluci%C3%B3n%20problemas.pdf.

Gestión de proyectos: Habilidades fundamentales para no salirse del presupuesto y cumplir los plazos. (2004). Bilbao: Ediciones Deusto.

Guitart, M. E. (2011). Del "Aprendizaje Basado En Problemas" (ABP) al "Aprendizaje Basado En La Acción" (ABA). Claves para su complementariedad e implementación. REDU. Revista De Docencia Universitaria, 9(1), 91. doi:10.4995/redu.2011.6182

Laberge, R. (2016). Collaborative Teamwork in Crossdisciplinarity. Universal Journal of Educational Research, 4(12), 2716-2723. doi:10.13189/ujer.2016.041204

Selinger, C. (2004). Stuff You Don't Learn in Engineering School: Skills for Success in the Real World. Hoboken, NJ: Wiley-IEEE Press.

Means:

Hands-on Organizing Committee. Hands-On General Rules.

Description In this subject, students close the construction cycle and enter into a process of getting involved in the administration and management of the Hands-On Program, in such a way that they test their ability to analyze situations that commonly occur between less experienced teams and generate propose activities in the Hands-On community that help the other teams to find solutions to these situations.

|--|

Specific goals for the course	
Outcomes of	1. Generate robust documentation, under established formats, that
instruction	promotes the efficiency and collaboration of work teams.

	 Develop and present solutions, within their role in their work team, to situations that affect the experience of community members and encourage collaboration within the community. Use the available tools to analyze performance data from Hands-On participants. Recognize their responsibility towards the well-being of the community by assisting with and enhancing events and activities that promote interdependence among community members. 	
Student outcomes	 SO2. Apply and use the engineering design process to produce solutions that meet specific needs, taking into consideration public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors. SO3. Communicate effectively with a variety of audiences. SO4. Recognize ethical and professional responsibilities in engineering situations and makes informed judgments considering the impact of engineering solutions in global, economic, environmental, and social contexts. 	

Unit I. Implementation Results Unit II. Hands-On Program Details Unit III. Hands-On Organizing Committee Unit IV. Community Experience Proposals

Code	IMC310	Prerequisites	180 approved credits
Name	Automated Assembly System	Co-requisites	None

Credits	Contact hours	
04	55	
Categorization of credits		
Math and Basic Science		
Engineering Topic	Х	
Other		

Instructor's course name:	Carlos de Jesus

Textbook

Boothroyd, G. (2005). Assembly Automation and Product Design (2nd ed.). CRC Press, Taylor & Francis Group.

Boothroyd, G. (2010). Assembly Automation and Product Design (3rd ed.). CRC Press.

other supplementary materials

Benhabib, B. (2003). Manufacturing: Design, Production, Automation, and Integration. CRC Press.

Crowson, R. (2006). Assembly Processes: Finishing, Packaging, and Automation. CRC Press.

Redford, A. H. (1994). Design for Assembly: Principles and Practice. McGraw-Hill Three, PA (2017). Designing Plastic Parts for Assembly. (8th ed.). Carl Hanser Verlag GmbH & Company

Description Automated Assembly Systems is an introductory course to the constituent elements of an automated assembly process and the products that can be automatically assembled. In it, students are additionally trained in the Design for Assembly (DFA) methodology, with which they can redesign products to improve their ease of assembly and subsequent cost.

Type of course	⊠ Required
Type of course	□ Elective

Specific goals for the course		
Outcomes of	1. Build and modify different systems and/or components suitable	
instruction	for solving the problems presented according to the required need.	
	2. Distinguish the types of assembly technologies existing in the	
	industry for the continuous improvement of processes.	
	3. Demonstrate respect for the established commitments, in order	
	to meet the proposed goals in reference to time and quality.	
	4. Review industrial processes according to current regulations to	
	make recommendations in a specific situation.	
Student	SO2. Apply the engineering design process to produce solutions	
outcomes	that meet specific needs taking into account public health, safety	
	and welfare, as well as global, cultural, social, environmental and	
	economic factors.	

SO4. Recognize ethical and professional responsibilities in
engineering situations and makes informed judgments considering
the impact of engineering solutions in global, economic,
environmental, and social contexts.
SO7. Acquire and apply new knowledge using appropriate learning
strategies.

Unit I. Assembly Line Components Unit II. Mid Term Project Unit III. Product Development Unit IV. Final Project

Co	de	IMC319	Prerequisites	IMC330
Nat	me	Mechatronics Engineering Project I	Co-requisites	None

Credits	Contact hours	
03	66	
Categorization of credits		
Math And Basic Science		
Engineering Topic	Х	
Other		

Instructor's course name: Deyslen Mariano

Textbook Haik, Y. (2016). Engineering Design Process (3rd Edition). CENGAGE Learning. Other Supplementary Materials

Bradley, DA, Seward, D. (2000). Mechatronics and the Design of Intelligent Machines and Systems. CRC Press.

Popovic, D., Vlacic, L. (1999). Mechatronics in Engineering Design and Product Development. Marcel Dekker Inc.

Shetty, D., Kolk, R. (2011). Mechatronic System Design (2nd edition). CENGAGE Learning.

Ulrich, K.T., Eppinger, S.D. (2016). Product Design and Development (6th edition) McGraw-Hill.

Description

Mechatronic Engineering Projects I is a subject oriented towards the implementation and development of skills in the engineering design process, applied to mechatronic solutions; where the student identifies the parameters and design requirements that best meet the constraints of a project, with which to create an intelligent, autonomous device that performs tangible operations, to provide a solution to an existing need.

Type of course

☑ Required□ Elective

Specific goals for the course				
Outcomes of 1. Identify the economic, environmental, social and ethical impa				
instruction	of the proposals made and classifies them according to the			
	standardized methods for these purposes.			
	2. Select appropriate procedures and components, taking into			
	account the compatibility, availability, reliability of these and			
	between them.			
3. Develop the steps of the engineering design process a				
	solution that meets the requirements of the problem to be solved.			
Student _	SO1. Identify, formulate, and solve complex engineering problems			
outcomes by applying the principles of engineering, scie				
	mathematics.			
	SO2. Apply the engineering design process to produce solutions			
	that meet specific needs taking into account public health, safety			
and welfare as well as global, cultural, social, environmen				
economic factors.				

SO4. Recognize ethical and professional responsibilities in
engineering situations and makes informed judgments considering
the impact of engineering solutions in global, economic,
environmental, and social contexts.

Unit I. Design Process Unit II. Virtual Prototype

Code	IMC332	Prerequisites	180 approved credits INE377
Name	Pneumatic and Hydraulic Circuits	Co-requisites	IMC332L

Credits	Contact hours
04	44
Categoriz	ation of credits
Math and basic science	
Engineering topic	Х
other	

Instructor's course name: Jose J

Jose Ezequiel Diaz Castillo

text- book

Merkle, D., Shrader, B., Thomes, M. (1998) Hydraulics: Basic Level. Study manual. (2nd edition). Festo Didactics KG.

Deppert, W., Stoll, K. (1997). pneumatic applications. Editorial Marcombo Haring, W., Metzger, M., Weber, RC (2005) Pneumatics: basic level. Festo Didactics GimbH & Co. KG.

Other supplementary materials

Essays, UK. (November 2013). Using Pneumatic and Hydraulic System Engineering Essay. Retrieved from https://www.ukessays.com/essays/engineering/usingpneumatic-and-hydraulic-system-engineering-essay.php?cref=1 Pinches, M. Ashby, J. G. (1988). PowerHydarulics . _ Prentice Hall. Schmitt, G.A. (1981). Hydraulic Training: book of information and teaching of hydraulics. GL Rexroth. Warring, R.H. (1983) Hydraulic Handbook. Gulf Publishing Co. Wehner , M., Tolley, M., Mengüç , Y., Park, Y., Mozeika , A., Ding, Y. ... Wood, R. (2014) Pneumatic Energy Sources for Autonomous and Wearable Soft. Robotics. Soft Robotics 2(00) http://micro.seas.harvard.edu/papers/SR14_Wehner.pdf Yang, D., Verma, M.S., Lossner , E., Stothers , D., & Whitesides , G.M. (2017). Negative-Pressure Soft Linear Actuator with a Mechanical Advantage. Advanced Materials Technologies, 2(1). Retrieved from: https://dash.harvard.edu/bitstream/handle/1/30353768/m

aintext_including_figures_and_SI_revision_for_production.pdf?sequence=4

Description

The pneumatic and hydraulic circuits consider the use of compressed air and hydraulic oil as a source of energy for the processes, including their automation and control. The knowledge of the pneumatic, hydraulic and electrical symbologies required according to the DIN ISO 1219 standard is contemplated, research on flexible conduits and sealing joints, circuit creation, construction of equipment with a certain degree of autonomy and the reading of machinery plans are integrated. of the practical world.

Type of course

⊠ Required □Elective

Specific goals for the course

outcomes of	1. Distinguish the types of hydraulic and pneumatic technologies				
instruction	existing in the industry for the continuous improvement of				
mstruction					
	processes.				
	2. Demonstrate respect for the established commitments, in order				
	to meet the proposed goals in reference to time and quality.				
	3. Reviews the plans and pneumatic and hydraulic processes of the				
	industry according to current regulations to make				
	recommendations in a specific situation.				
Student	SO2. Apply and use the engineering design process to produce				
outcomes	solutions that meet specific needs, taking into consideration public				
	health, safety, and welfare, as well as global, cultural, social,				
	environmental, and economic factors.				
SO4. Recognize ethical and professional responsibilit					
engineering situations and makes informed judgments cor					
the impact of engineering solutions in global, economic					
	environmental, and social contexts.				
	SO7. Acquire and apply new knowledge using appropriate learning				
	strategies.				

Unit I. Introduction to hydraulics and Pneumatics/Laboratory Introduction

Unit II. Pneumatic-Hydraulic-Electric symbologies/ Lab Practice Characteristic Curve of a fixed flow pump

Unit III. Pneumatic-Hydraulic-Electric symbologies/Lab Practice Stamping Machine Unit IV. Electrical Sensors/Distribution valves/ How to make hydraulics and pneumatics circuits/ Lab Practice Pressure Limiting Valve

Unit V. Investigation of flexible ducts and sealing gaskets/ Lab Practice One-Way Flow Regulating Valve

Unit VI. Oil functions/color code/hydraulics and pneumatics circuits/ Lab Practice Timers

Unit VII. Pumps and compressors/30/5000/ Lab Practice Intermediate Stop

Unit VIII. Drive elements and more valves/ Lab Practice Electric Event Counters Unit IX. Tips for avoiding hydraulic problems/ Lab Practice Hybrid system: Hydraulic

/ Pneumatic

Code	IMC332L	Prerequisites	180 approved credits INE377
Name	Laboratory of pneumatic and hydraulic circuits	Co-requisites	IMC332

Credits	Contact hours		
01	22		
Categorization of Credits			
Math and Basic Science			
Engineering Topic	Х		
Other			

Jose Ezequiel Diaz Castillo

Textbook Merkle, D., Shrader, B., Thomes, M. (1998) Hydraulics: Basic Level. Study manual. (2nd edition). Festo Didactics KG. Deppert, W., Stoll, K. (1997). pneumatic applications. Editorial Marcombo Haring, W., Metzger, M., Weber, RC (2005) Pneumatics: basic level. Festo Didactics GimbH & Co. KG. Other Supplementary Materials Diaz Castillo, JE (s.f.). Guía de práctica de laboratorio. Merkle, D., Shrader, B., Thomes, M. (1998) Hydraulics: Basic Level. Study manual. (2nd edition). Festo Didactics KG. Deppert, W., Stoll, K. (1977). pneumatic applications. Editorial Marcombo Essays, UK. (November 2013). Using Pneumatic and Hydraulic System Engineering Essay. Retrieved from https://www.ukessays.com/essays/engineering/usingpneumatic-and-hydraulic-system-engineering-essay.php?cref=1 Haring, W., Metzger, M., Weber, RC (2005) Pneumatics: basic level. Festo Didactics GimbH & Co. KG. Pinches, M. Ashby, J. G. (1988). PowerHydarulics . Prentice Hall. Schmitt, G.A. (1981). Hydraulic Training: book of information and teaching of hydraulics. GL Rexroth. Warring, R.H. (1983) Hydraulic Handbook. Gulf Publishing Co.

Wehner, M., Tolley, M., Mengüç, Y., Park, Y., Mozeika, A., Ding, Y. ... Wood, R. (2014) Pneumatic Energy Sources for Autonomous and Wearable Soft. Robotics. Soft Robotics 2(00) http://micro.seas.harvard.edu/papers/SR14_Wehner.pdf

Yang, D., Verma, M.S., Lossner, E., Stothers, D., & Whitesides, G.M. (2017). Negative-Pressure Soft Linear Actuator with a Mechanical Advantage. Advanced Materials Technologies, 2(1). Retrieved from:

https://dash.harvard.edu/bitstream/handle/1/30353768/maintext_including_figures_ and_SI_revision_for_production.pdf?sequence=4

Description

The pneumatic and hydraulic circuits consider the use of compressed air and hydraulic oil as a source of energy for the processes, including their automation and control. The knowledge of the pneumatic, hydraulic and electrical symbologies required according to the DIN ISO 1219 standard is contemplated. In this laboratory the elements learned in the theory of this subject are put into practice.

Type of course	Required

Specific goals for the course				
Outcomes of instruction1. Distinguish the types of hydraulic and pneumatic technologies existing in the industry for the continuous improvement of processes.2. Demonstrate respect for the established commitments, in order to meet the proposed goals in reference to time and quality. 3. Review the plans and pneumatic and hydraulic processes of the industry according to current regulations to make recommendations in a specific situation.				
Student outcomes	SO6. Develops and conducts appropriate experimentation, in which they analyze and interpret data, as well as use engineering criteria to draw conclusions.			

Unit I. Introduction to hydraulics and Pneumatics/Laboratory Introduction

Unit II. Pneumatic-Hydraulic-Electric symbologies/ Lab Practice Characteristic Curve of a fixed flow pump

Unit III. Pneumatic-Hydraulic-Electric symbologies/Lab Practice Stamping Machine Unit IV. Electrical Sensors/Distribution valves/ How to make hydraulics and pneumatics circuits/ Lab Practice Pressure Limiting Valve

Unit V. Investigation of flexible ducts and sealing gaskets/ Lab Practice One-Way Flow Regulating Valve

Unit VI. Oil functions/color code/hydraulics and pneumatics circuits/ Lab Practice Timers

Unit VII. Pumps and compressors/30/5000/ Lab Practice Intermediate Stop

Unit VIII. Drive elements and more valves/ Lab Practice Electric Event Counters

Unit IX. Tips for avoiding hydraulic problems/ Lab Practice Hybrid system: Hydraulic / Pneumatic

Code	IMC333	Prerequisites	INL350 INL350L INL352 INL352L
Name	Design and Programming of Controllers	Co-requisites	IMC333L

Credits	Contact hours	
04	40	
Categorization of credits		
Math and basic science		
Engineering topic	Х	
other		

Jose Ezequiel Diaz Castillo

Textbook

Bai, Y., & Roth, Z. (2018). Classical and modern controls with microcontrollers. Springler.

Parab, J., Shinde, S., Shelake , V., Kamat , R., & Naik, G. (2008). Practical Aspects of Embedded System Design using Microcontrollers. Springler.

Rafiquzzaman, M. (2018). Microcontroller Theory and Applications with the PIC18F. Wiley.

Other Supplementary Materials

Godse, A., & Godse, D. (2008). Microprocessors & Microcontroller Systems. Technical Publications Pune

Wilmshurst, T. (2009). Designing Embedded Systems with PIC Microcontrollers, Second Edition: Principles and Applications. Newnes

Description

It is a subject oriented to the knowledge of microcontrollers and microprocessors for the design of different types of controllers, where the student will have the opportunity to come into contact with these devices, learn about their structure and develop control systems for devices with a certain degree of intelligence. In addition, it aims to be the gateway for the design and management of control systems in a more efficient and safe way.

Type of course	⊠ Required
Type of course	□ Elective

Specific goals for the course	
Outcomes of	1. Use the appropriate tools to solve controller design problems
instruction	presented according to the required needs.
	2. Use different techniques for solving control problems that arise
	in the development of the course.
	3. Demonstrates knowledge of the different characteristics that
	microcontrollers and/or microprocessors have for the selection of
	the appropriate control system according to the need of the
	application presented

	4. Build control systems based on microcontrollers and/or microprocessors that can meet the current user needs, consistent with the context and type of application.
Student	SO1. Identify, formulate, and solve complex engineering
outcomes	problems by applying the principles of engineering, science, and mathematics.
	SO2. Apply and use the engineering design process to produce solutions that meet specific needs, taking into consideration public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors. SO4. Recognize ethical and professional responsibilities in engineering situations and makes informed judgments considering the impact of engineering solutions in global, economic, environmental, and social contexts. SO7. Acquire and apply new knowledge using appropriate learning strategies.

Unit I. General concepts of automatic control Unit II. Introduction to Microprocessors and Microcontrollers Unit III. microcontrollers

Unit IV. Introduction to Microcontrollers for Communications

Unit V. Instructions and Assembly Language

Unit VI. Microcontroller Programming Techniques

Unit VII. System Integration with Microcontrollers
Code	IMC333L	Prerequisites	INL350 INL350L INL352 INL352L
Name	Controller Design and Programming Laboratory	Co-requisites	IMC333

Credits	Contact hours
01	22
Categoriz	zation of credits
Math and basic science	
Engineering topic	Х
other	

Instructor's course name: Carlos de Jesus

Textbook

Bai, Y., & Roth, Z. (2018). Classical and modern controls with microcontrollers. Springler.

Godse, A., & Godse, D. (2008). Microprocessors & Microcontroller Systems. Technical Publications Pune.

Parab , J., Shinde, S., Shelake , V., Kamat , R., & Naik, G. (2008). Practical Aspects of Embedded System Design using Microcontrollers. Springler

Rafiquzzaman, M. (2018). Microcontroller Theory and Applications with the PIC18F. Wiley.

Wilmshurst, T. (2009). Designing Embedded Systems with PIC Microcontrollers (2nd ed.: Principles and Applications). Newnes.

Other supplementary materials

Ali Mazidi, M., Causey, D., & McKinlay, R. (2016). PIC Microcontroller and Embedded Systems: Using Assembly and C for PIC18 (2nd ed.). MicroDigitalEd . Gillis, J., & Microcontrollers Lab. (2019, April 24). Pic microcontroller tutorials for beginners with video lectures. Retrieved from https://microcontrollerslab.com/picmicrocontroller-tutorials-beginners/

Ibrahim, D. (2014). PIC microcontroller projects in C: Basic to advanced. Elsevier/ Newnes.

Description
This laboratory intends to present microcontrollers, which are currently used for the development of embedded control applications .

Type of course	⊠ Required □ Elective

Specific goals for the course	
Outcomes of	1. Use the appropriate tools to solve controller design problems
instruction	presented according to the required needs.
	2. Use different techniques for solving control problems that arise
	in the development of the course.

	 Demonstrate knowledge of PIC microcontrollers to develop appropriate embedded control systems according to the needs of the application presented. Implement programming in assembly language and C/C++ of control systems based on microcontrollers that can meet the user needs.
Student outcomes	 SO1. Identify, formulate and solve complex engineering problems by applying the principles of Engineering, Science and Mathematics. SO2. Apply and use the engineering design process to produce solutions that meet specific needs, taking into consideration public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors. SO4. Recognize ethical and professional responsibilities in engineering situations and makes informed judgments considering the impact of engineering solutions in global, economic, environmental, and social contexts. SO7. Acquire and apply new knowledge using appropriate learning strategies.

Topics

Unit I. Basic concepts of the PIC microcontroller Unit II. Basic configuration and programming Unit II. Indicators and displays Unit III. Character input and actuators Unit IV. Timers and switches V. PWM drive and RGB LED Unit VI. Communications Unit VI. Sensors

Code	IMC334	Prerequisites	200 credits approved
Name	Industry Tour	Co-requisites	None

Credits	Contact hours
00	12
Categoriz	zation of credits
Math and basic science	
Engineering topic	Х
Other	

Instructor's course name:	Devslen Mariano Hernandez

Textbook

Aquino J.A., Corona L. (2017). Mechatronics Engineering in Research, technological development and innovation. Retrieved from

https://www.researchgate.net/publication/310797457_LA_INGENIERIA_MECATR ONICA_EN_LA_INVESTIGACION_EN_EL_DESARROLLO_TECNOLOGICO_ Y EN LA INNOVACION I D I

Aquino JA, Corona L., Fernández C. (2017). Green Mechatronics as an actor and the fight against climate change as a stage. Retrieved from

https://www.researchgate.net/profile/Jose_Aquino2/publication/310613393_La_Meca tronica_Verde_como_actor_y_la_lucha_contra_el_change_climatico_como_escenari o/links/5833e59b08ae102f073693c2/La-Mecatronica-Verde-como-actor-y-la-luchaclimatico-contra-el-escenario scenario.pdf

Aquino JA, Corona L., Trujillo JC (2017). Trend in the teaching of Mechatronics Engineering and its disciplinary field. Retrieved from

http://www.palermo.edu/ingenieria/pdf2014/13/CyT_13_17.pdf

Mexican Association of Mechatronics AC (2017). Code of Ethics of the Mechatronics Engineer. Retrieved from https://www.mecamex.org/codigo-de-tica-del-mecatrnico

Other Supplementary Materials

Espiro Román P., Lizárraga Lizárraga A, Montoya Mejía CF (2017). Mechatronics Engineering and its Contribution to Sustainable Development. Retrieved from https://www.researchgate.net/profile/Piero_Espino/publication/303541378_La_Ingeni eria_Mecatronica_y_su_Contribucion_al_Desarrollo_Sustentable/links/5747285a08a e14040e28cd81/La-Ingenieria-Mecatronica-y-su-Contribucion-al-Desarrollo-Sustentable.pdf?origin=publication

Description

The industrial tour consists of several technical visits to different companies in which each student can have contact with systems, processes and machinery related to mechatronic engineering. It is intended to be a first approach to local companies, where the group will have the opportunity to meet companies in which knowledge of mechatronics engineering is applied, as well as being able to interact with professionals related to their career.

Type of course

☑ Required□ Elective

Specific goals for the course

Outcomes of instruction	1. The students will learn to evaluate the mechatronic systems they use to solve specific problems.
mstruction	2. Ability to analyze different mechatronic systems establishing a
	relationship with the concepts assimilated during the career and the
	systems used in local companies.
	3. The students will learn to analyze a proposed system to solve the
	specific problem, considering the different tools, techniques, and
	mechanisms that companies used to achieve a said solution.
Student	SO7. Acquire and apply new knowledge using appropriate
outcomes	learning strategies.

	Topics	
Unit I. Mechatronic Systems		

Code	IMC309	Prerequisites	IMC319
Name	Mechatronics Engineering Project II	Co-requisites	None

Credits	Contact hours
03	66
Categoriz	zation of credits
Math and basic science	
Engineering topic	Х
Other	

Instructor's course name:

text- book

Grey Guzman

Shetty, D., & Kolk, R. (2011). Mechatronic System Design (2nd ed.). CENGAGE Learning.

other supplementary materials

Bradley, DA, & Seward, D. (2000). Mechatronics and the Design of Intelligent Machines and Systems. CRC Press.

Haik, Y. (2016). Engineering Design Process (3rd ed.). CENGAGE Learning. Popovic, D., & Vlacic, L. (1999). Mechatronics in Engineering Design and Product Development. Marcel Dekker Inc.

Ulrich, K.T., & Eppinger, S.D. (2016). Product Design and Development (6th ed.) McGraw-Hill.

Description Mechatronics Engineering Projects II constitutes the Professional Practice of the student body in the Investigative Practice modality. It is linked to the integrated project developed.

Type of course

⊠ Required □ Elective

	Specific goals for the course
Outcomes of	1. Identify the economic, environmental, social and ethical impact
instruction	of the proposals made and classifies them according to
	standardized methods for these purposes.
	2. Execute the activities in the planned time, cost and quality.
	3. Integrate the appropriate solutions, procedures and components,
	taking into account the compatibility, availability, reliability of
	these and between them.
	4. Implement the steps of the design process in engineering and
	manufacturing a solution that meets the requirements of the
	problem to be solved.
	5. Analyze the situational state of the processes for the
	manufacture, acquisition and assembly of the components with
	which the problem will be solved and gain control for their
	implementation.
Student	SO2. Apply the engineering design process to produce solutions
outcomes	that meet specific needs taking into account public health, safety

and welfare as well as global, cultural, social, environmental and economic factors. SO4. Recognize ethical and professional responsibilities in engineering situations and makes informed judgments considering the impact of engineering solutions in global, economic, environmental, and social contexts. SO7. Acquire and apply new knowledge using appropriate learning strategies.

Topics

Unit I. Programming of Activities Unit II. Prototype Development Unit III. Demonstration

Code	IMC313	Prerequisites	180 credits approved
Name	Reliability Centered Maintenance (RCM)	Co-requisites	None

Credits	Contact hours
04	44
Categoriz	zation of credits
Math and basic science	
Engineering topic	Х
Other	

Instructor's course name: Jose Ezequiel Diaz Castillo

Textbook

SAE International (2002). A Guide to the Reliability-Centered Maintenance (RCM) Standard (JA1012 Standard).

SAE International (1999). Idhammar, T. (nd). Checking Best Practices for Preventive Maintenance [blog article]. IDCON INC: Resource Library. Retrieved from: http://www.idcon.com/resource-library/articles/preventive-maintenance/461checking-best-practices-for-preventive-maintenance.html

SAE International (1999). Evaluation Criteria for Reliability-Centered Maintenance (RCM) Processes (Standard JA1011).

Other Supplementary Materials

ABB Service (2015, April 30). Reliability-Centered Maintenance [video] Retrieved from: https://www.youtube.com/watch?v=XuzPttYmGgc

August, J. (1999) Applied Reliability Centered Maintenance. Penn Well Books.

Cohesive Solutions (2017, February 2017). Reliability Centered Maintenance (RCM) for Maximo [video]. Retrieved from:

https://www.youtube.com/watch?v=c3pLdHYo7tA

Moubray , J. (1997) RCM II. Reliability Centered Maintenance. Butterworth Heinemann Ltd

ReliaSoft Software (2015, Aug 13). Failure Modes and Effects Analysis: How to Become an Effective FMEA Practitioner [video]. Retrieved from:

https://www.youtube.com/watch?v=RK8g1DXUb5M&t=10s

Smith, AM (1993). Reliability Centered Maintenance. McGraw Hill, Inc.

UESystems (2013, January 29). 7 steps of RCM [video]. Retrieved from:

https://www.youtube.com/watch?v=5VmNHQUfYbw

Description

Reliability/Reliability Centered Maintenance (RCM) includes knowledge of maintenance at an industrial level and for assets in general, understanding the different types of maintenance from preventive, corrective, improvement and predictive. Carrying out an application of preventive maintenance in a company, as well as the search for information on preventive maintenance management at a general level. It integrates the RCM standard as a guide to take the next step in maintenance, which is the application of the RCM methodology in a practical field.

Type of course	⊠ Required
Type of course	

Specific goals for the course	
Outcomes of	1. Demonstrate respect for the established commitments, in order
instruction	to meet the proposed goals in reference to time and quality.
	2. Review best local and international maintenance practices to
make recommendations for a specific situation.	
	3. Analyze the types of maintenance existing in the industry to
	make proposals for continuous improvement of the processes.
Student	SO7. Acquire and apply new knowledge using appropriate learning
outcomes	strategies.

Topics
Unit I. Types of maintenance
Unit II. Preventive Maintenance plan
Unit III. The basic functions of maintenance
Unit IV. Operational reliability
Unit V. Midterm project
Unit VI. Reliability, Availability, Maintainability
Unit VII. Maintenance evolution
Unit VIII. RCM implementation plan
Unit IX. Final project

Code	IMC335	Prerequisites	IMC333 IMC333L
Name	Industrial Robotics	Co-requisites	IMC335L

Credits	Contact Hours
04	44
Categorization of credits	
Math and basic science	
Engineering topic	Х
Other	

Instructor's course name:	Grey Guzman
monución o course núme.	Orey Oullinuit

Text book

Morejon, A. (2018). Introduction to robotics. COMIMSA. Barrimientos, A., Peñin, F., Balaguer, C. & Arasil, R. (2007). Robotics fundamentals. McGraw-Hill.

Other supplemental materials

Hughes T. (1990). Programmable Controllers: Issues and Applications. ISA. McCloy, D., & Harris, D.M.J. (1993). Robotics, an Introduction. limousine Parkin, R. (1991). Applied RoboticAnalysis. Prentice Hall.

Description

Industrial Robotics is an Introduction to Robots, Manipulators, Mobile Robots, Entertainment Robots, among others.

The mathematical bases of robotics are covered: spatial references, transformations and homogeneous matrices (rotation and translation), direct and inverse kinematic analysis, dynamic analysis and control, movement planning and robot programming. Students also receive training in handling sensors, actuators, and controllers. Also included is an understanding of the electronic, mechanical, and computer systems that make up an industrial robot.

As a final result, the development of projects will be required, with which to practice and strengthen the knowledge acquired, which contain all the necessary tools to design and manufacture a process considering an industrial robot, as its main element.

Type of course	⊠ Required
Type of course	□ Elective

	Specific goals for the course	
Outcomes of instruction	 Formulate the problem taking into account the relevant needs, constraints and selection criteria. Create a working solution or prototype and evaluate its 	
	performance on specific tasks.	
Student	SO1. Identify, formulate, and solve complex engineering problems	
outcomes	by applying the principles of engineering, science, and mathematics.	

Topics

Unit I. Fundamentals of industrial robotics Unit II. Industrial robot morphology Unit III. Industrial robotics drive Unit IV. End effectors Unit V. Industrial robot motion control Unit VI. Programming of industrial robots Unit VII. Machine vision

Code	IMC335L	Prerequisites	IMC333 IMC333L
Name	Industrial Robotics Laboratory	Co-requisites	IMC335

Credits	Contact Hours
01	22
Categorization of credits	
Math and basic science	
Engineering topic	Х
Other	

Instructor's course name: Grey Guzman

Text book

NC (2019). ABB. Switzerland: Operator's manual ABB robostudio.

https://new.abb.com/products/robotics/en/robotstudio/downloads

Other supplemental materials

Morejon, A. (2018). Introduction to robotics. COMIMSA.

Barrimientos, A., Peñin, F., Balaguer, C. & Arasil, R. (2007). Robotics fundamentals. McGraw-Hill.

Hughes T. (1990). Programmable Controllers: Issues and Applications, ISA,

NC (2018). ABB. Switzerland: Robostudio ABB.

https://new.abb.com/products/robotics/en/robotstudio/downloads

Description

The objective of the Industrial Robotics Laboratory is the practical exercise of the concepts and use of the elements associated with industrial robotics, referring to the elements, both the mechanisms and the control systems that make up a robot and its capabilities.

A series of practices will be presented in which both actuators, sensors and controllers are combined for the solution of typical tasks for industrial robots, allowing the development of programming capabilities and integration between control and electronic mechanisms for the development of articulated chains.

In addition, it is intended that the student becomes familiar with the generalities of robot control software, basic concepts of robot programming and others.

Type of course		⊠ Required
		□Elective
Specific goals for the course		bals for the course
Outcomes of	1. Create a worki	ing solution or prototype and evaluate its
instruction performance on spec		cific tasks.
Student	SO1. Identify, form	ulate and solve complex engineering problems
outcomes	by applying the	principles of Engineering, Science and
	Mathematics	

	Topics	
Unit I. Controlled actuators		

Unit II. Feedback positioning Unit III. Trajectory control Unit IV. Sensorization Unit V. Controllers I Unit VI. Controllers II Unit VII. Industrial Controllers

Code	IMC336	Prerequisites	IMC333, INL352 and INL343
Name	Programmable Logic Controller	Co-requisites	IMC336L

Credits	Contact hours
04	44
Categoriz	zation of credits
Math and basic science	
Engineering topic	Х
Other	

Instructor's course name: Deyslen Mariano Hernandez

Textbook

Alvarez Pulido, M. (2004). Logic Controllers. Barcelona: Marcombo. Daneri, P. (2008). PLC. Automation and Industrial Control. Buenos Aires: HASA. Mandano Pérez, E., Marcos Acevedo, J., & Fernández Silva, C. (2009). Programmable Controllers and Automation Systems. Barcelona: Marcombo. Terzi, E. Regber, H. Loffler, C. & Ebel, F. (1999). Programmable Logic Controls. Esslingen: Festo Didactic.

other supplementary materials

Automation Direct (2017). PLC Handbook. Retrieved from http://library.automationdirect.com/plc-handbook/

Description It is a subject oriented to the basic knowledge of programmable logic controllers, where the student will have the opportunity to come into contact with these devices, learn about their basic structure and develop applications for automated system control. In addition, it aims to be the gateway for the design of control systems and process management in a more efficient and safe way.

Type of course	⊠ Required
Type of course	□ Elective

	Specific goals for the course	
Outcomes of	1. Selects and uses Programmable Logic Controllers (PLC) which	
instruction	implements control systems with a certain degree of intelligence,	
	for machinery and/or industrial processes.	
	2. Demonstrates knowledge of the different characteristics of PLCs	
	for the selection of the appropriate control system according to the	
	need of the application presented.	
	3. Builds PLC-based control systems for machinery and/or	
	processes that can meet the needs that users currently require in	
	coherence with the context and type of application.	
Student	SO2. Apply and use the engineering design process to produce	
outcomes	solutions that meet specific needs, taking into consideration	
	public health, safety, and welfare, as well as global, cultural,	
	social, environmental, and economic factors.	

Topics
Unit I. Automation with PLC
Unit II. Design and mode of operation
Unit III. How to select a controller
Unit IV. Programming software
Unit V. Programming a PLC
Unit VI. Ladder diagram
Unit VII. Function block diagram
Unit VIII. Network Design Basics
Unit IX. PID loop control methods
Unit X. Commissioning and functional safety

Code	IMC336L	Prerequisites	IMC333, INL352 and INL343
Name	Programmable Logic Controller Lab	Co-requisites	IMC336

Credits	Contact hours
04	18
Categoriz	zation of credits
Math and basic science	
Engineering topic	Х
other	

Instructor's course name: Deyslen M

Deyslen Mariano Hernandez

Textbook
Programming practices and examples with S7-1200 PLCs. Retrieved from
http://www.infoplc.net/descargas/103-siemens/automatas/s7-1200/2137-practicas-y-
exemples-de-programaci%C3%B3n-con-aut%C3%B3mata-s7-1200
Rockwell Automation (2017). Programming & Configuration. Retrieved from
http://www.rockwellautomation.com/global/support/connected-
components/workbench.page?#tab3
Rockwell Automation (2017). Micro810 programmable logic controller systems.
Retrieved from http://ab.rockwellautomation.com/es/Programmable-
Controllers/Micro810#documentation
Rockwell Automation (2017). Micro850 programmable logic controller systems.
Retrieved from http://ab.rockwellautomation.com/es/Programmable-
Controllers/Micro850#documentation
Terzi, E. Regber, H. Loffler, C. & Ebel, F. (1999). Programmable Logic Controls.
Esslingen: Festo Didactic .
Other Supplementary Materials

Description This laboratory aims to publicize the Allen Bradley brand, which is a leader in innovation and quality in the local and international market in automation components and integrated control systems. For this subject, the use of the micro and nano range of the manufacturer with the Micro810 and Micro850 PLCs will be taught, as well as the configuration and programming software CCW.

|--|

Specific goals for the course	
Outcomes of	1. Designs and develops solutions, corresponding to the level of
instruction	complexity of the control system using PLCs and its commissioning tool.
	2. Demonstrates knowledge of PLCs to develop appropriate control systems according to the need of the application presented.
	3. Creates ladder and function blocks language programming of PLC-based control systems that can meet the needs of users.

Student	SO2. Apply and use the engineering design process to produce
outcomes	solutions that meet specific needs, taking into consideration public
	health, safety, and welfare, as well as global, cultural, social,
	environmental, and economic factors.

Topics	
Unit I. Micro850 and Micro810 Basics	
Unit II. I/O diagnostics	
Unit III. Logical Operations	
Unit IV. Timers - Part I	
Unit V. Timers - Part II	
Unit VI. Accountants - Part I	
Unit VII. Accountants - Part II	
Unit VIII. Analog Signals	

Code	IMC338	Prerequisites	IMC337
Name	Hands-On Program 7	Co-requisites	None

Credits	Contact hours
00	20
Categorization of credits	
Math and basic science	
Engineering topic	Х
Other	

Instructor's course name: Ivan E. Jimenez

Text book
Jiménez, I. (2020). Descubriendo el COH.
Jimenez, I. (2020). Inducción a Hands-On.
Jimenez, I. (2017). Reglamento General.
Kuster, J. et al. (2015). Project management handbook (1st ed., Management for
Professionals). Springer. doi:10.1007/978-3-662-45373-5
Nagel, R. L., Pierrakos, O., & Nagel, J. K. (2013). A versatile guide and rubric to
scaffold and assess engineering design projects.
Other supplementary materials
Bados, A., & García, E. (2014). Resolución de problemas. Universitat de Barcelona.
http://diposit.ub.edu/dspace/bitstream/2445/54764/1/Resoluci% C3% B3n%
20problemas.pdf.
Guitart, M. E. (2011). Del "Aprendizaje Basado En Problemas" (ABP) al
"Aprendizaje Basado En La Acción" (ABA). Claves para su complementariedad e
implementación. REDU. Revista De Docencia Universitaria, 9(1), 91.
doi:10.4995/redu.2011.6182
Laberge, R.P. (2016). Collaborative Teamwork in Crossdisciplinarity. Universal
Journal of Educational Research, 4(12), 2716-2723.
Selinger, C. (2004). Stuff You Don't Learn in Engineering School: Skills for Success
in the Real World. Hoboken, NJ: Wiley-IEEE Press.
Gestión de proyectos: Habilidades fundamentales para no salirse del presupuesto y
cumplir los plazos. (2004). Ediciones Deusto.
Description

Description
This is the last subject of the Hands-On Program and represents the sum of the
experiences collected by the Mechatronics Engineering student throughout their
progression through the program. In this subject, students will work to test their
leadership skills and propose tools to analyze, evaluate and improve the results of teams
in the community, as well as evaluate, propose and organize activities to improve the
results of the Hands-On Program.

Type of course	⊠ Required
Type of course	□ Elective

Specific goals for the course	
Outcomes of	1. Produce documentation aimed at promoting improvement and
instruction	continuity of work.

	 Explore, with their work team, ways to organize and evaluate activities to improve the results of the Hands-On Program. Propose tools to analyze, evaluate and improve the results of the teams in the community. Propose improvements to the goals of the program based on the results and experiences in the organized activities.
Student	SO3. Communicate effectively with a variety of audiences.
outcomes	SO4. Recognize ethical and professional responsibilities in
	engineering situations and makes informed judgments considering
	the impact of engineering solutions in global, economic,
	environmental, and social contexts.
	SO5. Function effectively in a team whose members together
	provide leadership, create a collaborative and inclusive
	environment, set goals, plan tasks, and meet objectives.

Topics

Unit I. Hands-On Events

Unit II. Event Setup and Execution Unit III. Program Enhancements Unit IV. Documentation and Infographics