

Code	INI394	Prerequisites	INI310
Name	Design of Experiments	Co-requisites	INI394L

Credits	Contact Hours		
4	44		
Categorization of credits			
Math and basic science			
Engineering topic	Х		
Other			

Coordinator's name Demetrio Mota

Text book		
Gutiérrez Pulido, H. (2013). Analysis and design of experiments (Third edition).		
McGraw Hill.		
Gonzalez, R. (2018). Design of Experiments: Elements (Second edition). Amazon.		
Montgomery, D.C. (2015). Design and Analysis of Experiments (Second Edition).		
Limusa Wiley		
Peña, D. (2010). Regression and Design of Experiments (Second Edition). Publishing		
Alliance		
Walpole, R. (2007). Probability and statistics for engineering and science (8th edition).		
Pearson.		
Other supplemental materials		

Description

This subject provides the student with the techniques and tools of Statistics that allow them to establish a relationship between the elements of inputs of a process (critical parameters of materials and critical parameters) and the elements of output of the same (The Attributes of quality).

The information generated by the use of this instrument will allow you to make decisions on fundamental topics of Industrial engineering such as product design, selection of options, design of effective processes, the search for solutions to quality problems (CAPA), quality by design (Quility by Design), through the methods of Taguchi, process validation and process efficiency through Response surface.

Type of course	Required 🛛
Type of course	Elective

Specific goals for the course				
Outcomes of	1. Know the techniques that make up the Design of Experiments.			
instruction	2. Recognizes the situations in which you can apply the different			
	tools of Experimental Design.			
	3. Generate sufficient alternatives to solve the problem			
	4. Sets the parameters that determine the responses of processes.			

	5. Objectively select the best solution from the solutions generated	
	by the model.	
	6. Adequately communicates the appropriate arguments justifying	
	your choice.	
	7. Design control systems that ensure your solution works	
	properly over time	
Student outcomes	CG1. Identifies, formulates and solves complex Engineering	
	problems by applying the principles of Engineering, Science and	
	Mathematics.	
	SO2. Apply and use the engineering design process to produce	
	solutions that meet specific needs, taking into consideration public	
	health, safety, and welfare, as well as global, cultural, social,	
	environmental, and economic factors.	
	SO6. Develops and conducts appropriate experimentation, in	
	which they analyze and interpret data, as well as use engineering	
	criteria to draw conclusions.	
	SO7. Acquire and apply new knowledge using appropriate	
	learning strategies.	

Topics

Unit I. Single Factor Experiments Unit II. Factorial Experiments Unit III. Regression and Experimental Design of Taguchi

Unit IV. Process Optimization with Response Surface

Unit V. Special Experiment Design Cases