

	Code	INI393 Prerequis	ites	INI-391 INI-391L
NameOperational Research IICo-requisitesIN	Name	Operational Research II Co-requise	sites	INI-393L

Credits	Contact Hours			
04	44			
Categorization of credits				
Math and basic science				
Engineering topic	Х			
Other				

Coordinator's name Heidi Romero

Text book

Kelton, W.D., Sadowski, R.P., Swets, N.B. (2014) Simulation with Arena. McGraw-Hill Education.

Rossetti, M.D. (2015) Simulation Modeling and Arena. Willey Publishers.

Shortel, J.F., Thompson, J.M., Gross, D., Harris, C.M. (2018) Fundamentals of Queueing theory. Willey Publishers.

Taha, H.A. (2016) Operations Research. Pearson Prentice Hall.

Other supplemental materials

Altiok, T., Melamed, B. (2010) Simulation Modeling and Analysis with ARENA. Elsevier.

Diaz Redondo, R.P., Pazos Arias, J.J., Fernández Vilas, A. (2010) Problems of Tail Theory. Andavira Editor.

Description

At present, one of the major challenges of the industry is the need to optimize the use of resources used for the production of goods or services. This subject emphasizes the analysis and design of stochastic models to evaluate performance and propose alternatives for improvements in manufacturing processes and services, using engineering criteria to draw conclusions.

The course content covers the basic concepts of system simulation, process modeling, verification and validation of results through the use of statistical tests. Finally, it includes the classification of the models of queue theories using the Kendall nomenclature, describing their characteristics and their application in solving practical problems.

Type of course	Required ⊠
Type of course	Elective

Specific goals for the course						
Outcomes of	1. Identifies and applies optimization methods to solv					
instruction	instruction engineering problems using stochastic variables.					
2. Formula and model problems using stochastic variables.						

	3. It evaluates data from a mathematical model in order to propose	
	alternatives for improvements in a complex engineering problem.	
	4. Design systems, components or processes by modeling and	
	simulating discrete events.	
	5. It reflects on their learning experiences, identifying strengths	
	and points of improvement to achieve continuous learning.	
	6. Interprets and evaluates the results of a simulation model	
	through the use of statistical tests.	
Student outcomes	s SO1. Identifies, formulates and solves complex Engineering	
	problems by applying the principles of Engineering, Science and	
	Mathematics.	
	SO6. Develops and conducts appropriate experimentation, in	
	which they analyze and interpret data, as well as use engineering	
	criteria to draw conclusions.	
	SO7. Acquire and apply new knowledge using appropriate	
	learning strategies.	

Topics
Unit I. Introduction to System Simulation
Unit II. Simulation Models
Unit III. Queue Theory