

Code	INI-385L	Prerequisites	INE-354, INE-354L, ING-215, INM-377, INM-377L
Name	Process Automation Lab	Co-requisites	INI-385

Credits	Contact Hours		
01	22		
Categorization of credits			
Math and basic science			
Engineering topic	Х		
Other			

Coordinator's name Prof. José Rafael Silva Archetti

Text book

Training, F., (2015), Installation of equipment and elements of industrial automation systems, IC Editorial.

Other supplemental materials

Silva, J., (2017), Laboratory Manual Industrial Automation, Santo Domingo, Dominican Republic, INTEC.

Alvarez, D., (2015), Manual of hydraulics, pneumatics and PLC programming: Industrial automation, Mexico, Mexican Robotics and Mechatronics Association.

D'Addario, M., (2017), Industrial Automation - Technology, Representation and Functions - Volume I, Createspace.

Manufactured by: Made In Spain [TV series] (2013) Spain: Mediapro, Radiotelevisión Española.

Description

Process automation laboratory is a practice-oriented subject where the student will develop skills to design and install multiple elements of a control system for the automation of industrial processes or improve existing ones.

Each student will acquire practical knowledge about the use of devices and their individual behavior to automate small processes, using relays, electric motors, pneumatic valves, single and double effect pneumatic cylinders, industrial sensors and switches.

For the automation of larger and more complex processes, the student will learn to use Programmable Logical Controllers (PLCs), developing ladder diagrams, mnemonic codes and electrical connection diagrams for the interconnection of the PLC with peripheral devices.

Specific goals for the course

Outcomes of	1. It defines the problem by identifying some of the key insights.
instruction	2. It identifies some of the causes of the problem, using some
	complex techniques to find the causes of the problems or to
	validate them.
	3. It proposes solutions to the problem using basic principles and
	methods of engineering.
	4. It develops sufficient arguments to justify the selected solution,
	taking into account the criteria established in the problem
	definition.
	5. Clearly identifies needs and may set limited design objectives,
	criteria and constraints.
	6. It generates sufficient design alternatives, with some level of
	correlation with established criteria and restrictions and weakly
	supported in engineering sciences or other sciences.
	7. Please select alternatives taking into account some restrictions.
	8. Communicates design in a limited way by omitting some
	engineering standards and norms.
Student outcomes	SO1. Identifies, formulates and solves complex engineering
	problems by applying Engineering, Science and Mathematics
	principles.
	SO2. Apply and use the engineering design process to produce
	solutions that meet specific needs, taking into consideration public
	health, safety, and welfare, as well as global, cultural, social,
	environmental, and economic factors.

Topics

Unit I. Fishertechnik parts Unit II. Wired Logic I Unit III. Wired Logic II Unit IV. Pneumatics V. PLC unit