

Code	INI384	Prerequisites	INI326
Name	Methods engineering	Co- requisites	None

Credits	Contact hours	
04	44	
Categorization of credits		
Math and basic science		
Engineering topic	Х	
Other		

Coordinator's name	Jorge Miranda
e o o ramator s mane	voige minunau

Text book
Garcia Criollo, R. (2005). Estudio del Trabajo. (2nd ed.) Mexico: McGraw Hill.
Krick, E. (1975). Methods engineering. Mexico: Lima.
Nahmias, S. (2007). Analysis of production and operations. (5th edition). McGraw Hill.
Niebel, B., Freivald, A. (2014). Niebel Industrial Engineering: Methods, Standards,
and Work Design. (13th edition). Mexico: McGraw-Hill.
Other supplementary materials
Barnes, R. (1980). Time and Motion Study. (7th edition)
Buffa , ES (1982). Administración y dirección técnica de la producción. (4th edn).
Mexico: Lima.
Chase, R.B., Aquilano, NJ (1992). Production and operations management: a life cycle
approach. (6th edn). Irwin.
Maynard, H.B., Zandin , K.B. (2001). Maynard's Industrial Engineering Handbook.
(5th ed.). New York: McGraw Hill.
International Labor Office. (1986). Introduction to work study. (3rd revised ed.).
Geneva.

Wheat B, Carnell M, Mills C (2007). Six Sigma: A parable about the path to excellence and a lean company. Bogota: Editorial Norma.

D	•	· •
Des	crir	tion
	ու	mon

Methods Engineering is a theoretical-practical subject where the student will learn to analyze, improve and redesign production processes, both for manufacturing and service companies. For both cases, the student must use work study tools to solve problems that include phases from the identification of the needs of the client (person or company that requires the solution of a problem) to the creation, selection and argumentation of the solution. Proposed solution(s).

It includes the study of Methods and times. Use of diagrams to analyze the movement of material, flow and support activities.

Type of course	⊠ required
----------------	------------

□Elective _

	Specific goals for the course	
Outcomes of	1. Identify the client's needs to transform them into objectives,	
instruction	criteria and restrictions with a high level of compatibility and	
	using tools, methods and/or engineering systems.	
	2. Generate and select the best alternatives with a high level of	
	correlation with the established criteria and restrictions, in	
	accordance with engineering sciences and considering health,	
	welfare and safety.	
	3. Define the problem and its causes in a systemic way, including	
	all internal and external aspects of the problem, such as the impact	
	on other areas, the parties interested in solving the problem,	
	supporting roles that are needed, etc.	
	4. Select and justifies the best solution by using complex methods	
	(as necessary), according to the problem definition and within the	
	previously identified alternatives.	
	5. Prepare reports expressing most of the key ideas of the subject	
	matter, organizing and classifying them concrenity and with	
	Cilicita.	
	o. Assume corresponding roles within the established deadlines	
Student outcomes	SO1 Identify formulate and solve complex engineering problems.	
Student outcomes	by applying the principles of Engineering Science and	
	Mathematics	
	SO2 Apply the engineering design process to produce solutions	
	that meet specific needs, taking into consideration public health	
	safety and welfare as well as global cultural social	
	environmental and economic factors	
	SO3. Communicate effectively with a variety of audiences.	
	SO5. Function effectively in a team whose members together	
	provide leadership, create a collaborative and inclusive	
	environment, set goals, plan tasks and meet objectives.	

	Topics
Unit I. Study of movements	
Unit II. Work measurement	
Unit III. Ergonomic principles	