

Code	INI383L	Prerequisites	CBQ208 ING217
Name	Laboratory Materials Science and Engineering.	Co-requisites	INI383

Credits	Contact Hours	
01	22	
Categorization of credits		
Math and basic science		
Engineering topic	Х	
Other		

Coordinator's name	Laura Ramírez
--------------------	---------------

Text book		
Askeland, D., and Wright, W. (2017). Materials science and engineering. (7th Ed.)		
Mexico City : Cengage Learning Editors.		
Shackelford, James F. (2014). Introduction to materials science for engineers. (7th		
Ed.). Madrid: Pearson Prentice Hall.		
Callister, W., Rethwisch, D., Molera Solski, P. y Salá Ballesteros, N. (2016)		
Materials science and engineering. (2nd Ed.). Barcelona: Reverté.		
Ashby, M.F., Shercliff, H., & Cebon, D. (2014). Materials: engineering, science,		
processing and design. (3rd Ed.), Elsevier, Butterworth-Heinemann (BH).		
Lasheras, J. & Carrasquilla, J. (2005). Materials science for engineering. (1st Ed.) San		
Sebastián: Donostiarra.		
Kalpakjian, S., Schmid, S., Murrieta Murrieta, J., Sandoval Palafox, F. and Figueroa		
López, U. (2014). Manufacturing, engineering and technology. Naucalpan de Juárez		
(Spain). State of Mexico: Pearson Education of Mexico.		
CES Edupack Granta. (2017). Cambridge, United Kingdom: Granta Design Limited.		
Other supplemental materials		
Askeland, D. and Phule, P. (2011). Materials science and engineering, Thomson.		
Mangonon P. (1999). Materials science: selection and design, Prentice Hall.		
Ashby, M. (2011). Materials Selection in Mechanical Design, Elsevier.		
Giménez, C., Amigo, V.y Moya, M. (2009). Fundamentals of Materials Science, Volume		
I and II, Spain UPV.		
Van Vlack, L. (1980). Engineering Materials. (2nd Ed.). Mexico: CECSA.		

Description

The Materials Science and Engineering Laboratory is a basic course for understanding the relationship between the structure, properties, and processing and testing techniques of engineering materials. Various tests (tension, compression, bending, hardness, metallography, impact) are carried out on different materials following international standards, techniques or procedures. Students are expected to analyze the mechanical behavior of materials with the evaluation of faults (fracture mechanics), as well as determine the effect of composition and phases of structure on alloys with phase diagrams.

Type of course	Required 🗵
Type of course	Elective

Specific goals for the course				
Outcomes of	1. Summarizes the characteristics of the most important materials			
instruction	and their manufacturing processes by identifying the effects of			
	manufacturing processes on design.			
	2. It describes the microstructure of materials and the latest			
	advances in the technological development of materials			
	processing to incorporate design improvements.			
	3. Interprets the test requirements and/or specifications of a			
	product or material appropriately to assess its conformity or			
	determine its characteristics and properties.			
	4. It shows willingness and collaboration to team work during the			
	development of laboratory practice tests.			
	5. It organizes the data of the practices in a coherent and			
	structured way, detailing and describing the procedure carried			
	out to calculate design requirements or properties of the materials			
	relating it to the theoretical foundation that supports it.			
	6. Appropriately uses the primary concepts of materials science			
	and engineering for troubleshooting product materials and/or			
	their manufacturing processes.			
Student outcomes	SO1. Identifies, formulates and solves complex Engineering			
	problems through the application of Engineering, Science and			
	Mathematics principles.			
	SO5. Function effectively in a team whose members together			
	provide leadership, create a collaborative and inclusive			
	environment, set goals, plan tasks, and meet objectives.			
	SO6: Develops and conducts appropriate experimentation, in			
	which they analyze and interpret data, as well as use engineering			
	criteria to draw conclusions.			

Topics

Unit I. Introduction to materials science and engineering. Unit II. Mechanics of the fracture. Unit III. Metalography. Unit IV. Hardness. Unit V. Voltage. Unit V. Voltage. Unit VI. Compression. Unit VII. Flexion. Unit VII. Flexion. Unit VIII. Impact. Unit IX. Binary isomorphic phase diagrams. Unit X. Iron-Carbon Diagram.