

Code	INI310	Prerequisites	INI388
Name	Quality Control	Co-requisites	None

Credits	Contact Hours	
04	44	
Categorization of credits		
Math and basic science		
Engineering topic	Х	
Other		

Coordinator's name	Prof. Jessica Pamela Feliz Garrido.ME.
e o or annavor o manne	

Text book	
Barrentine, L. (2012). Concepts for R&R Studies (2nd ed.). American Society for	
Quality.	
Evan, J., & Lindsay, W. (2008). Administration and quality control (7th ed). Cengage	
Learning	
Gallardo Vázquez, S. (2015). Elements of telecommunications systems. Paraninfo	
Editions. ISBN:8428336636, 9788428336635	
Gutiérrez Pulido, H., & De la Vara, R. (2013). Statistical quality control and Six	
Sigma (3rd ed.). McGraw Hill.	
Other supplemental materials	
Chrysler Handbook (1989). Using SPC to be the Best. Chrysler Group LLC.	
Montgomery, D.C. (2001). Introduction to statistical quality control (4th ed.). John	
Wiley and Sons.	
Phadke, M.S. (1989). Quality Engineering using robust design. Prentice Hall	

Description The subject is oriented to the design of systems for quality control and assurance and implementation of statistical process control. It includes analysis of a process's capacity and techniques for process improvement, as well as the implementation of Lean Six Sigma as a project methodology.

Type of course	Required ⊠
Type of course	Elective

Specific goals for the course		
Outcomes of	1. Defines the problem by identifying all the key internal aspects	
instruction	of the problem: objectives, metrics, flow of the process	
	containing the problem, inputs and outputs of each stage of the	

process, among others, using the necessary methodologies to
define it.
2. Determines all causes of the problem, using some more
complex techniques to find these causes or to validate them
3. Proposes several solutions to the problem, selecting the best
alternative through the use of various methods based on the
principles of engineering, science and/or mathematics.
4. Elaborates sufficient arguments to justify the selected solution,
using evaluation techniques, showing a strong correlation
between the arguments and the criteria established in the
definition of the problem and grouping all the necessary data
used to justify the selected solution.
5. Identifies needs, transforming them into objectives, criteria
and constraints with a high level of compatibility, making use of
tools, methods and / or engineering systems.
6. Generates sufficient alternatives with a high level of
correlation with established criteria and restrictions and in
conformity with engineering sciences.
7. Selects the best alternative by effectively applying decision-
making methodologies and based on established design
constraints.
8. Participates in the planning of the objectives and their follow-
up until the fulfillment in an efficient way.
9. Interacts with team members in an appropriate manner,
encouraging and considering the ideas of other members and
implementing strategies to avoid and resolve conflicts.
10. Assumes the corresponding roles within the team according
to their abilities, fulfilling the commitments and respecting the
established deadlines.
11. Sets the objectives of the experiment, distinguishing the key
aspects, selecting the critical factors, as well as all relevant
responses, through a minimum amount of feasible tests.
12. Conducts the experiment in a comprehensive manner:
interpreting the behavior of variables throughout runs, ensuring
that instruments and measurement methods are able to detect
variations in the process, involving stakeholders, maintaining
leadership and coordinating all activities of the experiment.
13. Interprets the data and events that occurred during the
experimentation from the intensive use of multiple analysis tools,
organizing and documenting them without affecting the process,
and also performing confirmation runs when necessary to
determine if the data obtained are consistent with the
experimental assumptions.
14. Argues about the results obtained based on the evidence and
the analysis of experimentation, explaining the differences
between the data obtained and the experimental assumptions,
recommending the application of the results and identifying
possible risks.

Student outcomes	SO1. Identifies, formulates and solves complex engineering problems by applying the principles of Engineering, Science and Mathematics.
	SO2. Apply and use the engineering design process to produce solutions that meet specific needs, taking into consideration
	public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
	SO5. Function effectively in a team whose members together provide leadership, create a collaborative and inclusive
	environment, set goals, plan tasks, and meet objectives. SO6. Develops and conducts appropriate experimentation, in
	which they analyze and interpret data, as well as use engineering criteria to draw conclusions.

Topics

Unit I. Introduction to Quality Control

Unit II. Planning. DMAIC Stage Defines

Unit III. Statistical Process Measurement and Control. DMAIC Stage Measure.

Unit IV. Other Quality Control Tools

Unit V. Case Analysis and Validation DMAIC Stage Analyze

Unit VI. Continuous Improvement Methodologies DMAIC Stage Improve

Unit VII. Continuous learning and sustainability. DMAIC Stage Control