

Code	INI-307	Prerequisites	INI-348, ING-302
Name	Production Systems Design I	Co-requisites	None

Credits	Contact Hours	
04	44	
Categorization of credits		
Math and basic science		
Engineering topic	Х	
Other		

Coordinator's name	Cayetano Rodríguez
Coordinator 5 hance	

Text book		
Heizer, J. And Render, B. (2014). Operations Management Principles - Fifth Edition.		
Mexico: Pearson Education		
Niebel, B.W. and Freivalds, A. (2014). Industrial Engineering of Niebel, 13th edition,		
Mexico City: McGraw Hill		
Other supplemental materials		
Hernandez, J.C. and Vizán, A. (2013). Lean Manufacturing Concepts, Techniques		
and Implementation. Madrid: EOI Foundation		
Lunau, S. (2009). Design for Six Sigma + Lean Toolset Frankfurt, Germany: Springer		
Project Management Institute (2013). Project Management Fundamentals Guide -		
Fifth Edition. Newtown Square, PA: PMI		
Rother, M. and Harris, R. (2001). Creating Continuous Flow. Brookline, MA: The		
Lean Enterprise Institute		
Taghizadegan, S (2006). Essential of Lean Six Sigma. Oxford, UK: Elsevier		
Womack, J.P. and Jones, D.T. (2003). Lean Thinking - Revised and Updated. New		
York, NY: Free Press		
Carreira, B (2005). Lean Manufacturing that works. New York, NY: AMACOM		
Nash, M.A. and Poling, S.R. (2008). Mapping the Total Value Stream. New York,		
NY: CRC Press		

Description

Production Systems Design I is a theoretical-practical subject where students will learn to analyze and develop basic production systems, both for industrial and service companies, or to improve existing ones. For both cases, the student must use methods of design and problem solving that include phases or steps that range from identifying the needs of the client (person or company that requires the solution of a problem) to the creation, selection and argumentation of the proposed solution(s). It should be added that, within each of the phases of these methods mentioned above, there are tools designed to: identify customer needs, define problems, analyze their causes, design, present and plan the implementation of solutions, among other types of tools. The student will then learn to identify and apply the appropriate tool for each type of problem that is presented and in the corresponding sequence.

Type of course	Required 🛛
Type of course	Elective

Specific goals for the course				
Outcomes of	1. Identifies customer needs to transform them into objectives,			
instruction	criteria and constraints with a high level of compatibility and			
	making use of tools, methods and / or engineering systems.			
	2. It generates sufficient alternatives with a high level of			
	correlation with established criteria and restrictions, in			
	accordance with engineering sciences and taking into account			
	health, welfare and safety.			
	3. Select the best alternative by effectively applying decision-			
	making methodologies and based on established design			
	constraints.			
	4. It defines the problem in a systemic way, including all internal			
	and external aspects of the problem, such as impact on other			
	areas, stakeholders in problem resolution, support roles needed,			
	etc.			
	5. It determines all causes of the problem from the use of specific			
	techniques and prioritizing among the causes found.			
	6. Select the best solution using complex methods (as needed),			
	according to the problem definition and within previously			
	identified alternatives.			
	7. Justifies the selected alternative based on arguments consistent			
<u>Q. 1</u>	with the criteria set in the problem definition.			
Student outcomes	SO1. Identifies, formulates and solves complex Engineering			
	problems through the application of Engineering, Science and			
	Mathematics principles.			
	SO2. Apply and use the engineering design process to produce			
	solutions that meet specific needs, taking into consideration			
	public health, safety, and welfare, as well as global, cultural,			
	social, environmental, and economic factors.			

TopicsUnit I: Overview of Production System DesignUnit II: Methods and Tools for identifying customer needs and defining the problemUnit III: Methods and Tools to analyze production systems and propose designalternativesUnit IV: Methods and Tools for planning and sustainability of production systems