

Code	INI301	Prerequisites	INS209 CBM201
Name	Engineering Economics	Co-requisites	None

Credits	Contact Hours	
04	44	
Categorization of credits		
Math and basic science		
Engineering topic	Х	
Other		

Coordinator's name	Carlos Cordero
	Freddy Lara
	Humberto Grullón

Text book		
Park, C.S. (2009). Fundamentals of Engineering Economy (2nd. ed.). Pearson-		
Prentice Hall Publishing		
Vidaurri Aguirre, H.M. (2013). Basic Economic Engineering (1st. Ed.). Cengage		
Learning Publishers.		
Other supplemental materials		
Bacca Urbina, G. (2007). Fundamentals of Engineering Economics (4th ed.).		
Publisher McGraw Hill.		
Blank, L.T., & Tarquin, A.J. (2013). Engineering Economics (7th ed.). Publisher		
McGraw Hill.		
Sullivan, W., Wicks, E., & Luxhoj, J. (2004). DeGarmo's Engineering Economics		
(12th ed.). Pearson-Prentice Hall Publishers.		
White, J; Kenneth, C; Pratt, D., & Agee, M. (2001). Engineering Economics (2nd		
ed.). Limus Wiley.		

Description		
This course combines basic knowledge of engineering with elements of economics, in		
order to prepare the student to analyze investment alternatives based on economic and		
financial comparisons, with the aim of determining which of options generates the		
greatest added value for thus being able to point out which is the best alternative to		
invest the money. In this subject the student is prepared in mathematical aspects for		
these purposes.		
Required		

Type of course	⊠ Required
Type of course	□ Elective

Specific goals for the course		
Outcomes of	1. Understand the impact of engineering solutions in a global	
instruction	context and, based on this, performs efficient analyzes of	
	alternatives that involve the use of money in order to determine	
	the best financial alternative.	
	2. Show willingness to work as a team, even in cases where the	
	help of other disciplines is required.	
	3. Show willingness to search for additional information when	
	the cases that are presented to him require it.	
	4. Demonstrate commitment to their own learning, presenting	
	their doubts regarding the topics studied in the course.	
	5. Respect the established rules of coexistence and work	
Student outcomes	SO1. Identify, formulate and solve complex engineering	
	problems by applying the principles of Engineering, Science and	
	Mathematics.	
	SO4. Recognize ethical and professional responsibilities in	
	engineering situations and make informed judgments considering	
	impact of engineering solutions in global, economic,	
	environmental, and social contexts.	
	SO5. Function effectively in a team whose members together	
	provide leadership, create a collaborative and inclusive	
	environment, set goals, plan tasks, and meet objectives.	
	SO7. Acquire and apply new knowledge as required, using	
	appropriate learning strategies.	

Topics

Unit I. Fundamentals of Economic Engineering, value of money over time Unit II. Cash Flow Equivalence Factors Unit III. Nominal Interest Rate and Effective Interest Rate

Unit IV. Analysis, evaluation and comparison of alternatives

Unit V. Analysis of Multiple Alternatives, Replacement and Depreciation

Unit VI. Sensitivity Analysis