

Code	ING217	Prerequisites	ING216
Name	Strength of Material	Co-requisites	ING207L

Credits	Contact Hours	
04	44	
Categorization of credits		
Math and basic science		
Engineering topic	Х	
Other		

Coordinator's name	José Daniel Benjamín Hernández, Ms.E
	Eng. Aris Raquel Ricart.

Text book	
Other supplemental materials	
Beer, F. P., Johnston Jr., E. R., DeWolf, J. T., Mazurek, D. F. (2012), Materials	
Mechanics, (6th. Edition), Mexico: McGraw-Hill.	
Gere, J. M., Goodno, B. J., (2012). Materials mechanics (8th. Edition), Mexico:	
Cengage	
Hibbeler, R.C. (2012). Materials mechanics (8th. Edition), Mexico: Pearson Pretince	
Hall	
Mott, R. L. (2009), Materials mechanics (5th. Edition), Mexico: Pearson	
Pytel, A., Singer, F. L. (2012). Material resistance. (4th. Edition). Oxford: Alphabet	

Description

This course trains students to solve problems, teaching them to select the right materials for the design purposes in engineering, analyzing the behavior of the materials subjected to the different states of loads: axial, shear, bending and torsion; and the stresses and deformations produced by these, the state of combined loads. The transformation of stress in the flat state and its application in the design of thin wall elements, cylindrical and spherical containers under pressure, and the transformation of flat deformation, the deformation rosette.

The teaching process is based on the demonstration of the theoretical concepts to be used, and illustrate with examples how they can be implemented in problem solving. Then each student will apply what they have learned in the realization of the practices that will strengthen the development of the competencies.

Type of course	Required 🗵
	Elective

Specific goals for the course				
Outcomes of	EG1.1. Identifies the forces acting on a structural element to make			
instruction	free body diagrams.			
	EG1.2. Identifies the charge states generated by the acting forces			
	to analyze stresses and strains in design processes			
	EG1.3. Evaluates material properties to select the most			
	appropriate material in the context of specific situations.			
Student outcomes	CG1. Identifies, formulates, and solves complex engineering			
	problems by applying the principles of engineering, science, and			
	mathematics.			

Topics
Unit I. Introduction
Unit II. Axial force
Unit III. Moment and Cutting Diagram
Unit IV. Pure Flexion
V. Composite Bending Unit
Unit VI. Torsion
Unit VII. Cutting force
Unit VIII. Flat Effort Statuses
Unit IX. Applying Flat Effort Statuses