

Code	INE354L	Prerequisites	CBF212 CBF212L
Name	Electrical Circuit Laboratory	Co-requisites	INE354

Credits	Contact Hours	
01	22	
Categorization of credits		
Math and basic science		
Engineering topic	X	
Other		

Coordinator's name	Prof. Giuseppe Sbriz Zeitun
Coordinator s hame	Prof. Giuseppe Sofiz Zeituli

Text book

Other supplemental materials

Black & Decker (2009). The Complete Guide on Electrical Installations (4th ed.). Creative Publishing International.

Heiserman, R. (1992). Training Manual for Industrial Electrician Technicians. Vol.1: Editorial Limusa.

Muller, W. (1994). Power electrotechnology: upper course. Editorial Reverté

Rizzoni, G. (2002). Principles and applications of electrical engineering. McGrawHill

Tocci, R. (2013). Digital systems: principles and applications (8th ed). Pearson

Floyd, T. (2007). Principles of electrical circuits (8a. ed.). Pearson

Description

This laboratory is based on providing the student with spaces for practice and development of skills related to electrical and electronic circuits. Through this, you will acquire the practical knowledge of electrical installations, design and connections of automated circuits (relays, sensors, etc.), the operation of electronic elements (diodes, transistors, etc.) and combinational logic (and, or, not). At the same time you will acquire the knowledge for the correct use of certain electrical measuring equipment and accessories used in industrial electrical installations.

The teaching methodology is based on the teacher's presentation and the students' subsequent development of the practices. The teacher will be a guide, for the good performance of the students, during the completion of the practice allowing the student to be the one who elaborates it completely and in this way acquire the necessary practical skills.

Type of course	Required ⊠
Type of course	Elective □

Specific goals for the course				
Outcomes of	EG1. Handle tools for electrical and electronic use properly.			
instruction	EG2. Identify and describe the use of materials and accessories in			
	electrical installations.			
	EG3. Make schematic diagrams of different types for the			
	development of a desired function.			
Student outcomes	CG1. Develop and conducts appropriate experimentation,			
	analyzes and interprets data, and uses engineering criteria to draw			
	conclusions.			

Topics

Unit I. Use of the multimeter - serial and parallel circuits

Unit II. Electrical connections

Unit III. Electrical materials

Unit IV. Relay, Contactors and Timers

Unit V. Combinational logic Unit VI. Ladder Diagram

Unit VII. Actuators and sensors

Unit VIII. Diodes

Unit IX. SCR and transistors