

Code	CBM202	Prerequisites	CBM201
Name Vector Calculus Co-requi		Co-requisites	None

Credits	Contact Hours		
05	55		
Categorization of credits			
Math and basic science	Х		
Engineering topic			
Other			

Coordinator's name	Randy Leonardo

Text book

Stewart, J. (2012) Calculus of several variables. Early Transcendents. 7th Edition. Mexico: Editorial Cengage Learning.

Other supplemental materials

Larson, R.; Hostetler, Robert P. (2006). Calculus of several variables.8ta. Edition. Publisher: McGraw-Hill

Larson, R. (2010). Essential Calculus. Auditorium Editions. Madrid Spain. Thomas, Jr George B (2010). Calculus of several variables. Twelfth ed. Publisher: Pearson

Chambers, S. (2006). Calculus. 10 Edition. Ed Wiley.

GPL (2016) Geogebra (5.0.259.0) [Free Software] Retrieved from: http://www.geogebra.org

Description

Through the Vector Calculus subject, the student will extend their comprehension and reasoning skills from Differential Calculus in one variable to Differential Calculus in several variables, as well as its applications, from the use of mathematical models that allow student to visualize and explain phenomena of real life.

The Vector Calculus subject includes a study of vectors and geometry of space where surfaces in space are analyzed in different types of coordinates. The dot product, the cross product, equations of lines and planes, as well as their applications, are developed.

Also included is an analysis of everything related to Differential Calculus in various variables and applications, multiple integrals, and areas and volumes are calculated using multiple integrals.

Type of course	🖾 Required
Type of course	

	Specific goals for the course				
Outcomes of	EG1. Create associations and show interest in the information				
instruction	obtained from the graphs and data to increase curiosity about the				
	subject and strengthen intellect.				
	EG2. Allow the help of peers, through integration into work groups, for best understanding and interpretation of content and/or activities presented in class.				
	EG3. Appreciate the knowledge obtained to estimate areas and volumes and shows analytical skills in the construction of vector functions.				
	EG4. Internalize and become aware of the importance of derivatives and integrals to solve environmental problems in which they are applicable.				
Student outcomes	CG1. Identify, formulates, and solve complex engineering problems by applying the principles of engineering, science, and mathematics.				
	CG2. Work effectively in teams whose members collectively provide leadership, create a collaborative and inclusive environment, set goals, plan tasks, and meet objectives.				

Topics		
Unit I. Vectors and Geometry of Space		
Unit II. Vector Functions		
Unit III. Partial Derivatives		
Unit IV. Multiple Integrals		
Unit V. Vector Calculus		