APPENDIX A – COURSE SYLLABI

INCLUDE ONLY COURSE SYLLABI FOR THE DISCIPLINE-SPECIFIC COURSES OF THE PROGRAM FOR READINESS REVIEW

Code	INI201	Prerequisites	None
Name	Introduction to Industrial Engineering	Co-requisites	None

Credits	Contact Hours		
02	22		
Categorization of credits			
Math and basic science			
Engineering topic	Х		
Other			

Instructor's course name: Sharon Schnabel

Text book

Gabriel Baca U., M. C. (2014). Introducción a la ingeniería industrial. México: Patria. Maynard, H.B. & Zandin, K.B.; (2001) Maynard's Industrial Engineering Handbook (5th edition). New York: McGraw Hill.

Other supplemental materials

Madhavan, G; (2015) Applied Minds: How Engineers Think (1st edition). New York: W.W. Norton & Company.

Michalko, M. (2006). Thinker toys: A handbook of creative-thinking techniques. Berkeley, Calif: Ten Speed Press.

Senge, P.M. (1990). The fifth discipline: the art and practice of the learning organization. New York :Doubleday/Currency.

Description

The content of the subject addresses the following topics: 1. General aspects of industrial engineering, 2. Analytical, systemic and engineering thinking, 3. Nature of industrial processes, 4. Productivity and continuous improvement, 5. Quality management, 6. Operations Administration, 7. Work Study and Design, 8. Logistics, 9. Facilities Design.

Type of course	🖾 Required
Type of course	□ Elective

Specific goals for the course			
Outcomes of	1. Develop solutions according to the current reality, taking into		
instruction	account ethical and professional responsibility.		
	2. Assess consequences of the impact of engineering decisions in		
	global, regional and local contexts (economic, environmental and		
	social).		
	3. Identify the copyright in the particular solutions developed.		

	4. Infer through the information of another the need for new			
	knowledge.			
	5. Compile some sources of information and occasionally apply it			
	to the achievement of objectives.			
Student	SO4. Recognize ethical and professional responsibilities in			
outcomes	engineering situations and makes informed judgments considering			
	the impact of engineering solutions in global, economic,			
	environmental and social contexts.			
	SO7. Acquire and apply new knowledge as required, using			
	appropriate learning strategies.			

Topics	
Unit I: Introduction to Industrial Engineering	
Unit II: Generalities of Industrial Engineering	
Unit III: Nature of Industrial Processes	
Unit IV: Logistics and Information Systems	
Unit V: Productivity and Continuous Improvement	
Unit VI: Quality	
Unit VII: Operations Management	
Unit VIII: Work Study and Design	
Unit IX: Facility Design	

Code	INI381	Prerequisites	INI201
Name	Quality Management I	Co-requisites	None

Credits	Contact Hours		
04	44		
Categorization of credits			
Math and basic science			
Engineering topic	Х		
Other			

Instructor's course name:	Jessica Pamela Feliz Garrido Marie Sharon Schnabel Mercedes
	Alfonsina Martínez Martínez

Text book

Evan, J., Lindsay, W. (2015) Quality Management and Control, (9th Edition). Cengage Learning.

Other supplemental materials

González Ortíz, J. H., Izar Landeta, J.M. (2004). Las 7 herramientas básicas de calidad: descripción de las 7 herramientas estadísticas para mejorar la calidad y aumentar la productividad. Universidad Potosina.

Guaspari, J. (1998) Erase una vez una fábrica. Norma Publisher

Hay, E.J. (2002) Justo a Tiempo. Bogotá: Norma Publisher

Kume. H. (1992) Herramientas estadísticas básicas para el mejoramiento de la calidad. Norma Publisher.

Organización Internacional de Normalización (2001) ISO/TR 10013:2001 Directrices para la documentación de sistemas de gestión de la calidad [Data File]. Retrieved from https://www.iso.org/obp/ui#iso:std:iso:tr:10013:ed-1:v1:es

Organización Internacional de Normalización (s.f.) ISO 9000: Sistemas de gestión de la calidad — Fundamentos y vocabulario [Data File]. Retrieved from: https://www.iso.org/

Pérez Fernández de Velasco, J. (2004). Gestión por procesos (1st ed.). Pozuelo de Alarcón: ESIC.

UNIT. Instituto Uruguayo de Normas Técnicas (2009) Herramientas para la Mejora de la Calidad

Description

This subject from the Quality Management module will introduce the concepts and tools necessary for the student to understand the principles of quality management and develop throughout the module the ability to design, structure and administer a management system of quality based on the effective management of processes, their alignment with the strategy, continuous improvement and quality assurance. Likewise, the student will have the ability to identify, understand and apply tools for modeling, design, analysis, improvement and documentation of the processes of an organization.

As a methodology for teaching and learning, the subject will be based on presentations, videos, dynamics and discussions in class, use of software and technology, as well as project-based learning. The effectiveness of said methodology for the development of competencies will be evaluated through a checklist, assessment scales, peer evaluation and objective tests.

Type of course	🖾 Required
Type of course	□ Elective

Specific goals for the course			
Outcomes of	1. Identify the causes of engineering problems using different		
instruction	quality tools.		
	2.Discriminate and apply tools to improve processes according to		
	the problems identified through analysis.		
	3. Demonstrate ability to lead and participate in teams efficiently		
	and effectively.		
	4. Demonstrate openness towards constructive criticism and the		
	recognition of needs for self-improvement, participating in training		
	and feedback activities inside and outside the classroom.		
	5. Establish a relationship between strategy and processes based on		
	the planning, nature and limitations of any organization.		
	6. Prepare standardized documentation, ensuring a unified		
	language of the different elements of a process.		
Student	SO2. Apply and use the engineering design process to produce		
outcomes	solutions that meet specific needs, taking into consideration public		
	health, safety, and welfare, as well as global, cultural, social,		
	environmental, and economic factors.		
	SO3. Communicate effectively with a variety of audiences.		
	SO4. Recognize ethical and professional responsibilities in		
	engineering situations and makes informed judgments considering		
	the impact of engineering solutions in global, economic,		
	environmental, and social contexts.		
	SO5. Function effectively in a team whose members together		
	provide leadership, create a collaborative and inclusive		
	environment, set goals, plan tasks, and meet objectives.		

TopicsUnit I. Quality ManagementUnit II. Quality Planning and DesignUnit III. Process managementUnit IV. Quality ToolsUnit V. Quality Assurance (Standardization/Documentation of Processes)

Code	INI301	Prerequisites	INS209 CBM201
Name	Engineering Economics	Co-requisites	None

Credits	Contact Hours		
04	44		
Categorization of credits			
Math and basic science			
Engineering topic	Х		
Other			

Instructor's course name:	Carlos Cordero Freddy Lara
	Humberto Grullón

Text	book
1 0/10	00011

Park, C.S. (2009). Fundamentals of Engineering Economy (2nd. ed.). Pearson-Prentice Hall Publishing

Vidaurri Aguirre, H.M. (2013). Basic Economic Engineering (1st. Ed.). Cengage Learning Publishers.

Other supplemental materials

Bacca Urbina, G. (2007). Fundamentals of Engineering Economics (4th ed.). Publisher McGraw Hill.

Blank, L.T., & Tarquin, A.J. (2013). Engineering Economics (7th ed.). Publisher McGraw Hill.

Sullivan, W., Wicks, E., & Luxhoj, J. (2004). DeGarmo's Engineering Economics (12th ed.). Pearson-Prentice Hall Publishers.

White, J; Kenneth, C; Pratt, D., & Agee, M. (2001). Engineering Economics (2nd ed.). Limus Wiley.

Description

This course combines basic knowledge of engineering with elements of economics, in order to prepare the student to analyze investment alternatives based on economic and financial comparisons, with the aim of determining which of options generates the greatest added value for thus being able to point out which is the best alternative to invest the money. In this subject the student is prepared in mathematical aspects for these purposes.

Type of course	⊠ Required

Specific goals for the course				
Outcomes of	1. Understand the impact of engineering solutions in a global			
instruction	context and, based on this, performs efficient analyzes of			
	alternatives that involve the use of money in order to determine the			
	best financial alternative.			
	2. Show willingness to work as a team, even in cases where the			
	help of other disciplines is required.			
	3. Show willingness to search for additional information when the			
	cases that are presented to him require it.			

	4. Demonstrate commitment to their own learning, presenting their			
	doubts regarding the topics studied in the course.			
	5. Respect the established rules of coexistence and work			
Student	SO1. Identify, formulate and solve complex engineering problems			
outcomes	by applying the principles of Engineering, Science and			
	Mathematics.			
	SO4. Recognize ethical and professional responsibilities in			
	engineering situations and make informed judgments considering			
	impact of engineering solutions in global, economic,			
	environmental, and social contexts.			
	SO5. Function effectively in a team whose members together			
	provide leadership, create a collaborative and inclusive			
	environment, set goals, plan tasks, and meet objectives.			
	SO7. Acquire and apply new knowledge as required, using			
	appropriate learning strategies.			

Unit I. Fundamentals of Economic Engineering, value of money over time Unit II. Cash Flow Equivalence Factors

Unit III. Nominal Interest Rate and Effective Interest Rate

Unit IV. Analysis, evaluation and comparison of alternatives

Unit V. Analysis of Multiple Alternatives, Replacement and Depreciation

Unit VI. Sensitivity Analysis

Code	INI-339	Prerequisites	None
Name	Industrial Engineering Seminar	Co-requisites	None

Credits	Contact Hours		
02	22		
Categorization of credits			
Math and basic science			
Engineering topic	Х		
Other			

Layna Santana

Text book Madhavan, G. (2016). Applied Minds: How Engineers Think. New York, USA: W. W. Norton & Co.

Other supplemental materials Goleman, D. (1998a). What Makes a Leader? Harvard Business Review, 82–91. Hernandez, M. (2003). "Comunicacion y Trabajo Social", in Fernández García, T. and Alemán, C. (eds.). Introduction to social work. Madrid: Alliance, pp. 555-572. Nishiguchi, T., & Beaudet, A. (1998). The Toyota Group and The Aisin Fire. Sloan Management Review, 49–59.

Description

The subject aims to develop a clear sense of industrial engineering, through the application of a first integrative project and the study of case studies, as well as to serve as a basis for the development of soft skills as a pillar in the development of future professionals. At the end of this program, the student is expected to be able to acquire and apply new knowledge, as well as present their ideas clearly and fluently in any forum.

Type of course	⊠ Required □ Elective

Specific goals for the course		
Outcomes of	1. Correctly use the techniques of negotiation and effective	
instruction	communication, identifying and evaluating their audience, as well	
	as using the best practices/techniques to achieve a correct	
	transmission of the message, and the scope of the proposed	
	objectives.	
	2. Present solutions to day-to-day problems, responding to	
	proposed challenges and using research methods to generate new	
	knowledge/ideas based on previous studies.	
	3. Demonstrate a critical, purposeful and proactive attitude in the	
	oral presentations of their projects.	
	4. Work collaboratively with groups of students to develop	
	projects.	
Student	SO3. Communicate effectively with a variety of audiences.	
outcomes	SO7. Acquire and apply new knowledge, as required, using	
	appropriate learning strategies.	

	Topics	
Unit I. Profile of the Industria	ıl Engineer	
Unit II. Soft Skills Developm	ent	
Unit III. Effective communic	ation	
Unit IV. Knowledge Manage	ment	
Unit V. Professional Develop	ment	

Code	INI326	Prerequisites	INI339
Name	Industrial Development Evolution	Co-requisites	None

Credits	Contact Hours
02	22
Categoriz	ation of credits
Math and basic science	
Engineering topic	Х
Other	

Louis Toirac

Text book

Gillen. C. (2001). The social organization of production as a dynamic of development. Horizon Publisher.

Maynard, H. (2018). Handbook of Industrial Engineering. McGraw Hill.

Womack, J., Jones, D., & Roos, D. (1992). The machine that changed the world. McGraw Hill.

Other supplemental materials

Boyer, R., & Freyssenet, M. (2003). Productive models. Publisher Fundamentals. Chase, R., Jacobs, R., & Aquilano, N. (2014). Management of operations, products and supply chains. McGraw Hill.

Neffa, JC (1998). The Taylorist and Fordist paradigms and their crises. Lumen/Work and Society/ PIETTE.

Niebel, B. (1992). Industrial Economics and Management. Penn State University. Niebel, B. (2009). Industrial engineering. McGraw Hill.

Ohno, T. (2001). The Toyota Production System. Management Editions 2000. Taylor, F. (1984). Principles of scientific management. The Athenaeum.

Description

The subject has the objective of taking the student through the different paradigms and productive models that have emerged after the first industrial revolution. With this, he will understand what concepts motivate these changes and what the current trend is, while developing an understanding of their professional role in the current production model.

The content of the subject focuses on the detailed study of the production models: artisanal, mass and adjusted, through their characteristics and impact on the production systems, as well as in-depth analysis of the profitability strategies related to the industrial activity: quality, volume, volume and diversity, permanent cost reduction, innovation and flexibility. They are established through the study of production models based on the experience of the automotive industry: Kalmarism, Taylorism, Fordism, Sloanism, Ohnism and Hondism, and through the approaches of its main conceptualizers and executors in the industry.

\Box Elective	Type of course	⊠ Required
	Type of course	□ Elective _

Specific goals for the course

Outcomes of	1. Prepare reports expressing most of the key ideas of the topic
instruction	being discussed, organize and classify them coherently and with
	criteria.
	2. Present oral messages clearly using physical gestures, facial
	expressions and regulation of the tone of voice.
	3. Use complementary, detailed and organized information to
	support the ideas that you want to convey.
	4. Provide evidence from reliable and up-to-date sources.
	5. Participate in the planning of the objectives and the partial
	follow-up of their fulfillment.
	6. Interact with team members appropriately, encourages and
	considers the ideas of other members.
	7. Apply strategies to avoid and resolve conflicts.
Student	SO3. Communicate effectively with a variety of audiences.
outcomes	SO5. Function effectively in a team whose members together
	provide leadership, create a collaborative and inclusive
	environment, set goals, plan tasks and meet objectives.
	SO7. Acquire and apply new knowledge as required, using
	appropriate learning strategies.

Topics		
Unit I. Productive models and the craft model		
Unit II. Scientific Administration and work organization. Taylorism		
Unit III. Mass production: Fordism and Sloanism		
Unit IV. Lean production: Ohnism and Hondism		
Unit V. Import substitution model in the Dominican Republic		

Code	INI382	Prerequisites	INI339, CBM206
Name	Industrial Statistics	Co- requisites	INI382L

Credits	Contact hours
04	44
Categoriz	ation of credits
Math and basic science	
Engineering topic	Х
Other	

Instructor's course name: Demetrio Mota

Text book

Devore, J.L. (2010). Probability and statistics for engineering and science. Thompson International.

Other supplementary materials Montgomery, D. (1997). Statistics and Probabilities. continental publisher. Perez, Cesar. 2002. Statistics applied through Excel. Madrid: Prentice Hall. Walpole, Ronald E. & Myers, Raymond H. (2008). Probability and statistics Prentice Hall Latin America. Mexico.

Description This subject provides the student with the statistical tools that allow them to solve complex problems of Industrial Engineering.

These tools cover both those used for Descriptive Statistics, in which the participant develops skills that allow them to characterize masses of process data, with which they can diagnose problems that Industrial Engineering must solve

They will also handle the instruments of statistical inference that allow them to formulate hypotheses about the processes to solve the typical problems of these

Type of course	⊠ Required
Type of course	□ Elective

	Specific goals for the course
Outcomes of	1. Define the problem taking into account the characteristics that it
instructions	presents.
	2. Choose the appropriate Tools to solve the problem.
	3. Determine probable causes.
	4. Apply Tools.
	5. Evaluate the consequences of the decisions that result from the
	solution.
	6. Effectively communicate proposed solutions.
Student	SO3. Communicate effectively with a variety of audiences.
outcomes	SO6. Develop and conduct appropriate experimentation, in which
	they analyze and interpret data, as well as use engineering criteria
	to draw conclusions.

T	
1 01	nics
10	pres

Unit I. Descriptive Statistics Unit II. Statistical inference Unit III. Regression Unit IV. Anova Unit V. Non-parametric tests

Code	INI382L	Prerequisites	INI339 CBM206
Name	Laboratory of Industrial Statistics	Co-requisites	INI382

Credits	Contact Hours
01	22
Categoriz	ation of credits
Math and basic science	
Engineering topic	Х
Other	

Instructor's course name:	Demetrio Mota
	Ingrid Mordán

Text bo	ook
Minitab (2018). Introduction to Minitab 18. M	Minitab Inc.
Other supplemen	ntal materials
	o • •

Devore, J.L. (2010). Probability and statistics for engineering and science. Thompson International

Montgomery, D. (1997). Statistics and Probabilities. Continental Publishing House. Walpole, R. E., & Myers, R. H. (2012). Probability and statistics for engineering and science. Pearson Education.

Description

This subject aims to provide the student with knowledge of the fundamental principles of inferential statistics applied to Industrial Engineering. During the course, the student receives the tools for solving complex problems from Industrial Engineering, with statistical support for decision making.

The contents are divided into 5 thematic units, addressing the topics of: Introduction to Minitab, Minitab Sampling and Estimation, Minitab Hypothesis Testing, Minitab Regression and Correlation and Analysis of Variance (ANOVA) in Minitab.

|--|

Specific goals for the course		
Outcomes of	1. It expresses statistical results of its analyzes responsibly.	
instruction	2. Applies knowledge of mathematics and statistics in the analysis	
	of industrial engineering problems and the resolution of them.	
	3. Analyzes and interprets data from your environment using	
	statistical methods.	
	4. Participates in teams for the development and execution of	
	engineering projects and research formulation, contributing to the	
	achievement of established goals.	
	5. It uses specialized software for presentation, inferences and	
	statistical data analysis.	
Student	SO1. Identifies, formulates and solves complex Engineering	
outcomes	problems through the application of Engineering, Science and	
	Mathematics principles.	

SO4. Recognizes ethical and professional responsibilities in
engineering situations and makes informed judgments considering
the impact of engineering solutions in global, economic,
environmental and social contexts.
SO5. Function effectively in a team whose members together
provide leadership, create a collaborative and inclusive
environment, set goals, plan tasks, and meet objectives.
SO6. Develops and conducts appropriate experimentation,
analyzes and interprets data, and uses engineering criteria to draw
conclusions.

Unit I. Introduction to Minitab Unit II. Sampling and Estimation in Minitab Unit III. Minitab Hypothesis Test Unit IV. Analysis of Variance Unit V. Regression and Correlation

Code	INI383	Prerequisites	CBQ208 ING217
Name	Materials Science and Engineering	Co-requisites	INI383L

Credits	Contact Hours
04	44
Categoriz	ation of credits
Math and basic science	
Engineering topic	Х
Other	

Instructor's course name:	Vesselina Radeva

Text book

Ashby, M. F., Shercliff, H., & Cebon, D. (2014). Materials: engineering, science, processing and design. (3rd Ed.), Elsevier, Butterworth-Heinemann (BH). Askeland, D., and Wright, W. (2017). Materials science and engineering. (7th Ed.) Mexico City: Cengage Learning Editors. CES Edupack Granta. (2018). Cambridge, United Kingdom: Granta Design Limited.

Other supplemental materials

Callister, W., Rethwisch, D., Molera Solaná, P. y Salá Ballesteros, N. (2016) Materials science and engineering. (2nd Ed.). Barcelona: Reverté. Shackelford, James F. (2014). Introduction to materials science for engineers. (7th Ed.). Madrid: Pearson Prentice Hall.

Van Black, L. (1980). Engineering Materials. (2nd Ed.). Mexico: CECSA.

Description
Materials Science is a scientific discipline closely related to research, which aims at
basic knowledge of the internal structure, properties and processing of materials.
Materials Engineering deals with the knowledge of materials at fundamental and
applied levels, so that they can be converted into products needed or desired by a
technological society. It is sometimes difficult to define the border between the two as
there is a common area of use. What is clear is that the two must walk together.

Type of course	⊠ Required
Type of course	□ Elective

Specific goals for the course		
Outcomes of	1. Uses up-to-date selection and design tools and programs for the	
instruction	conceptualization, development and evaluation of new materials	
	and product improvement.	
	2. Appropriately uses the main concepts of materials science and	
	engineering to solve problems concerning materials and their	
	properties.	
Student	SO1. Identifies, formulates and solves complex Engineering	
outcomes	problems by applying the principles of Engineering, Science and	
	Mathematics.	
	SO7. Acquire and apply new knowledge using appropriate learning	
	strategies.	

Unit I. Introduction

Unit II. Ideal crystalline structures

Unit III. Real crystalline structures

Unit IV. Movement of atoms

Unit V. Phase diagrams in equilibria

Unit VI. Control of micro-structure and mechanical properties of materials

Unit VII. Engineering Materials Unit VIII. Protection against material deterioration and failure

Code	INI383L	Prerequisites	CBQ208 ING217
Name	Laboratory Materials Science and Engineering.	Co-requisites	INI383

Credits	Contact Hours
01	22
Categoriz	ation of credits
Math and basic science	
Engineering topic	Х
Other	

Text book

Laura Ramírez

Askeland, D., and Wright, W. (2017). Materials science and engineering. (7th Ed.) Mexico City: Cengage Learning Editors.

Shackelford, James F. (2014). Introduction to materials science for engineers. (7th Ed.). Madrid: Pearson Prentice Hall.

Callister, W., Rethwisch, D., Molera Solski, P. y Salá Ballesteros, N. (2016) Materials science and engineering. (2nd Ed.). Barcelona: Reverté.

Ashby, M.F., Shercliff, H., & Cebon, D. (2014). Materials: engineering, science, processing and design. (3rd Ed.), Elsevier, Butterworth-Heinemann (BH).

Lasheras, J. & Carrasquilla, J. (2005). Materials science for engineering. (1st Ed.) San Sebastián: Donostiarra.

Kalpakjian, S., Schmid, S., Murrieta Murrieta, J., Sandoval Palafox, F. and Figueroa López, U. (2014). Manufacturing, engineering and technology. Naucalpan de Juárez (Spain). State of Mexico: Pearson Education of Mexico.

CES Edupack Granta. (2017). Cambridge, United Kingdom: Granta Design Limited. Other supplemental materials

Askeland, D. and Phule, P. (2011). Materials science and engineering, Thomson. Mangonon P. (1999). Materials science: selection and design, Prentice Hall.

Ashby, M. (2011). Materials Selection in Mechanical Design, Elsevier.

Giménez, C., Amigo, V.y Moya, M. (2009). Fundamentals of Materials Science, Volume I and II, Spain UPV.

Van Vlack, L. (1980). Engineering Materials. (2nd Ed.). Mexico: CECSA.

Description

The Materials Science and Engineering Laboratory is a basic course for understanding the relationship between the structure, properties, and processing and testing techniques of engineering materials. Various tests (tension, compression, bending, hardness, metallography, impact) are carried out on different materials following international standards, techniques or procedures. Students are expected to analyze the mechanical behavior of materials with the evaluation of faults (fracture mechanics), as well as determine the effect of composition and phases of structure on alloys with phase diagrams.

Type of course	⊠ Required
Type of course	□ Elective

Specific goals for the course			
Outcomes of	1. Summarizes the characteristics of the most important materials		
instruction	and their manufacturing processes by identifying the effects		
	manufacturing processes on design.		
	2. It describes the microstructure of materials and the latest		
	advances in the technological development of materials processing		
	to incorporate design improvements.		
	3. Interprets the test requirements and/or specifications of a product		
	or material appropriately to assess its conformity or determine its		
	characteristics and properties.		
	4. It shows willingness and collaboration to team work during the		
	development of laboratory practice tests.		
	5. It organizes the data of the practices in a coherent and structured		
	way, detailing and describing the procedure carried out to calculate		
	design requirements or properties of the materials relating it to the		
	theoretical foundation that supports it.		
	6. Appropriately uses the primary concepts of materials science and		
	engineering for troubleshooting product materials and/or their		
	manufacturing processes.		
Student	SO1. Identifies, formulates and solves complex Engineering		
outcomes	problems through the application of Engineering, Science and		
	Mathematics principles.		
	SO5. Function effectively in a team whose members together		
	provide leadership, create a collaborative and inclusive		
	environment, set goals, plan tasks, and meet objectives.		
	SO6: Develops and conducts appropriate experimentation, in		
	which they analyze and interpret data, as well as use engineering		
	criteria to draw conclusions.		

Topics
Unit I. Introduction to materials science and engineering.
Unit II. Mechanics of the fracture.
Unit III. Metalography.
Unit IV. Hardness.
Unit V. Voltage.
Unit VI. Compression.
Unit VII. Flexion.
Unit VIII. Impact.
Unit IX. Binary isomorphic phase diagrams.
Unit X. Iron-Carbon Diagram.

Code	INI384	Prerequisites	INI326
Name	Methods engineering	Co- requisites	None

Credits	Contact hours	
04	44	
Categorization of credits		
Math and basic science		
Engineering topic	Х	
Other		

Text book

Jorge Miranda

Garcia Criollo, R. (2005). Estudio del Trabajo. (2nd ed.) Mexico: McGraw Hill. Krick, E. (1975). Methods engineering. Mexico: Lima.

Nahmias, S. (2007). Analysis of production and operations. (5th edition). McGraw Hill. Niebel, B., Freivald, A. (2014). Niebel Industrial Engineering: Methods, Standards, and Work Design. (13th edition). Mexico: McGraw-Hill.

Other supplementary materials

Barnes, R. (1980). Time and Motion Study. (7th edition)

Buffa , ES (1982). Administración y dirección técnica de la producción. (4th edn). Mexico: Lima.

Chase, R.B., Aquilano, NJ (1992). Production and operations management: a life cycle approach. (6th edn). Irwin.

Maynard, H.B., Zandin, K.B. (2001). Maynard's Industrial Engineering Handbook. (5th ed.). New York: McGraw Hill.

International Labor Office. (1986). Introduction to work study. (3rd revised ed.). Geneva.

Wheat B, Carnell M, Mills C (2007). Six Sigma: A parable about the path to excellence and a lean company. Bogota: Editorial Norma.

Description

Methods Engineering is a theoretical-practical subject where the student will learn to analyze, improve and redesign production processes, both for manufacturing and service companies. For both cases, the student must use work study tools to solve problems that include phases from the identification of the needs of the client (person or company that requires the solution of a problem) to the creation, selection and argumentation of the solution. Proposed solution(s).

It includes the study of Methods and times. Use of diagrams to analyze the movement of material, flow and support activities.

Type of course	⊠ Required
	□ Elective

Specific goals for the course			
Outcomes of	1. Identify the client's needs to transform them into objectives,		
instruction	criteria and restrictions with a high level of compatibility and using		
tools, methods and/or engineering systems.			
2. Generate and select the best alternatives with a high level of			
	correlation with the established criteria and restrictions, in		

	SO2. Apply the engineering design process to produce solutions that meet specific needs, taking into consideration public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.SO3. Communicate effectively with a variety of audiences.SO5. Function effectively in a team whose members together provide leadership, create a collaborative and inclusive		
outcomes	by applying the principles of Engineering, Science and Mathematics.		
Student	SO1. Identify, formulate and solve complex engineering problems		
	criteria. 6. Assume corresponding roles within the team based on their skills, meeting commitments within the established deadlines.		
	5. Prepare reports expressing most of the key ideas of the subject matter, organizing and classifying them coherently and with		
	4. Select and justifies the best solution by using complex methods (as necessary), according to the problem definition and within the		
	 welfare and safety. 3. Define the problem and its causes in a systemic way, including all internal and external aspects of the problem, such as the impact on other areas, the parties interested in solving the problem, supporting roles that are needed, etc. 		
	accordance with engineering sciences and considering health,		

Unit I. Study of movements Unit II. Work measurement Unit III. Ergonomic principles

Code	INI307	Prerequisites	INI348, ING302
Name	Production Systems Design I	Co-requisites	None

Credits	Contact Hours	
04	44	
Categorization of credits		
Math and basic science		
Engineering topic	Х	
Other		

Instructor's course name:	Cayetano Rodríguez

Text book

Heizer, J. And Render, B. (2014). Operations Management Principles - Fifth Edition. Mexico: Pearson Education

Niebel, B.W. and Freivalds, A. (2014). Industrial Engineering of Niebel, 13th edition, Mexico City: McGraw Hill

Other supplemental materials

Hernandez, J.C. and Vizán, A. (2013). Lean Manufacturing Concepts, Techniques and Implementation. Madrid: EOI Foundation

Lunau, S. (2009). Design for Six Sigma + Lean Toolset Frankfurt, Germany: Springer Project Management Institute (2013). Project Management Fundamentals Guide -Fifth Edition. Newtown Square, PA: PMI

Rother, M. and Harris, R. (2001). Creating Continuous Flow. Brookline, MA: The Lean Enterprise Institute

Taghizadegan, S (2006). Essential of Lean Six Sigma. Oxford, UK: Elsevier Womack, J.P. and Jones, D.T. (2003). Lean Thinking - Revised and Updated. New York, NY: Free Press

Carreira, B (2005). Lean Manufacturing that works. New York, NY: AMACOM Nash, M.A. and Poling, S.R. (2008). Mapping the Total Value Stream. New York, NY: CRC Press

Description

Production Systems Design I is a theoretical-practical subject where students will learn to analyze and develop basic production systems, both for industrial and service companies, or to improve existing ones. For both cases, the student must use methods of design and problem solving that include phases or steps that range from identifying the needs of the client (person or company that requires the solution of a problem) to the creation, selection and argumentation of the proposed solution(s). It should be added that, within each of the phases of these methods mentioned above, there are tools designed to: identify customer needs, define problems, analyze their causes, design, present and plan the implementation of solutions, among other types of tools. The student will then learn to identify and apply the appropriate tool for each type of problem that is presented and in the corresponding sequence.

Type of course	⊠ Required
Type of course	□ Elective

Specific goals for the course	
1 0	

Outcomes of	1. Identifies customer needs to transform them into objectives.								
instruction	criteria and constraints with a high level of compatibility and								
	making use of tools, methods and / or engineering systems.								
	2. It generates sufficient alternatives with a high level of								
	correlation with established criteria and restrictions in accordance								
	with engineering sciences and taking into account health. welfare								
	and safety.								
	3. Select the best alternative by effectively applying decision-								
	making methodologies and based on established design constraints.								
	4. It defines the problem in a systemic way, including all internal								
	and external aspects of the problem, such as impact on other areas.								
	stakeholders in problem resolution, support roles needed, etc.								
	5 It determines all causes of the problem from the use of specific								
	techniques and prioritizing among the causes found								
	6 Select the best solution using complex methods (as needed)								
	according to the problem definition and within previously								
	identified alternatives								
	7 Justifies the selected elternative based on encuments consistent								
	7. Justifies the selected alternative based on arguments consistent								
Q41+	with the criteria set in the problem definition.								
Student	SOI. Identifies, formulates and solves complex Engineering								
outcomes	problems through the application of Engineering, Science and								
	Mathematics principles.								
	SO2. Apply and use the engineering design process to produce								
	solutions that meet specific needs, taking into consideration public								
	health, safety, and welfare, as well as global, cultural, social,								
	environmental, and economic factors.								

Topics
Unit I: Overview of Production System Design
Unit II: Methods and Tools for identifying customer needs and defining the problem
Unit III: Methods and Tools to analyze production systems and propose design
alternatives

Unit IV: Methods and Tools for planning and sustainability of production systems

Code	INI388	Prerequisites	INI381 INI382 INI382L
Name	Quality Management II	Co-requisites	None

Credits	Contact Hours				
04	44				
Categorization of credits					
Math and basic science					
Engineering topic	Х				
Other					

Alfonsina Martínez

Text book Dominican System for Quality (SIDOCAL) Law 166-12. National Congress of the Dominican Republic (2012). Other supplemental materials International Organization for Standardization (2015). ISO 9000:2015 Quality management systems — Fundamentals and vocabulary. https://www.iso.org/ International Organization for Standardization (2015). ISO 9001:2015 Quality management systems — Requirements. https://www.iso.org/ International Organization for Standardization (2009). ISO 9004:2009 Management for the sustained success of an organization. Quality management approach. https://www.iso.org/ International Organization for Standardization (2018). ISO 31000:2018 Risk management. Guidelines. https://www.iso.org/ International Organization for Standardization (2011). ISO 19011:2018 Guidelines for the audit of management systems. https://www.iso.org/ QMS auditing topics for ISO 9001:2015. https://committee.iso.org/sites/tc176/home/page/iso-9001-auditing-practicesgrou.html

Description

This subject of the Quality Management module will introduce the concepts and tools necessary for the student to understand and collaborate in the implementation of a quality management system; developing in the subject the ability to design, implement, manage, evaluate and improve a quality management system. They will also acquire the ability to identify, understand and apply tools for the implementation of good practices and models of excellence in an organization. Likewise, the student will know the basic concepts of metrology as a basis for the development of future competences.

Type of course Required Flective
--

Specific goals for the course					
Outcomes of	1. Identifies needs and converts them into goals, criteria and design				
instruction	constraints.				
	2. Generates alternatives supported in engineering sciences, social				
	sciences, economics among others, selecting the best.				

	3. Create design specifications, prototypes or other communication							
	media.							
	4. Develop solutions according to the current reality, taking into							
	account ethical and professional responsibility.							
	5. Evaluates the consequences of the impact of engineering							
	decisions in contexts (economic, environmental and social) at							
	global, regional and local levels.							
	6. Recognizes copyright in the particular solutions developed.							
	7. Plan strategies for meeting goals.							
	8. Interacts with team members, open to the opinions of others.							
	9. Identifies your role as a member of the work team for the							
	achievement of the objectives.							
	10. Identifies the need to acquire new knowledge, relating it to a							
	learning strategy.							
	11. Uses various methods and tools to obtain information relevant							
	to new knowledge.							
Student	SO2. It applies the engineering design process to produce solutions							
outcomes	that meet specific needs taking into account public health, safety							
	and welfare, as well as global, cultural, social, environmental and							
	economic factors.							
	SO4. Recognizes ethical and professional responsibilities in							
	engineering situations and makes informed judgments considering							
	the impact of engineering solutions in global, economic,							
	environmental and social contexts.							
	SO5. It works effectively on teams whose members together							
	provide leadership, create a collaborative and inclusive							
	environment, set goals, plan tasks, and meet goals.							
	SO7. Acquire and apply new knowledge as required, using							
	appropriate learning strategies.							

H	•
To	DICS

Unit I. Standardization and standardization bodies Unit II. ISO standards Unit III. Implementation of the quality management system Unit IV. ISO 9001 standard Unit V. Evaluation of management systems Unit VI. Standardization, improvement and risk management Unit VII. Models of Excellence

Unit VIII. Introduction to Metrology

Code	INI389	Prerequisites	INI383
Name	Materials selection	Co- requisites	None

Credits	Contact hours				
04	44				
Categorization of credits					
Math and basic science					
Engineering topic	Х				
Other					

Instructor's course name: Laura Ramirez

Text book											
Ashby,	М.;	Shercliff,	H.	&	Cebon	,	D.	(2018).	Materials:	engineering,	science,
process	ing a	nd design.	(4th	n Ec	l.) Elsev	vie	r, B	Butterwor	th-Heinema	ınn (BH).	

Ashby, M. (2013) Materials and the Environment. Eco-Informed Material Choice. (2nd Ed.) Elsevier, Butterworth-Heinemann (BH).

Askeland, D., & Wright, W. (2017). Materials science and engineering. Mexico, DF: Cengage Learning Publishers.

Kalpakjian, S. & Schmid, S. (2014). Manufacturing, engineering and technology (7th Ed.) Naucalpan de Juárez (State of Mexico): Pearson Educación de México.

Ashby, M. and Johnson K. (2014) Materials and Design: The Art and science of Material Selection in Product Design (3rd Ed.) Elsevier, Butterworth-Heinemann (BH). Other supplementary materials

CES Edupack Great. (2018). Cambridge, UK: Granta Design Limited.

grantadesign.com. (2019). great Design: Education. [online] Available at: http://www.grantadesign.com/education/ [Accessed April 22, 2019].

Ports Rafales, J., Rios Jordana, R. & Castro Corella, M. (2016). Materials Technology in Engineering. Madrid: Synthesis

The Institute of Materials, Minerals and Mining. (2019). IOM3 The Institute of Materials, Minerals and Mining. [online] Available at: https://www.iom3.org/ [Accessed April 23, 2019].

Description

Materials selection is a subject that trains the student in a theoretical and practical way in the selection of materials according to the design requirements of a product and the designer's objectives (improvement of environmental impact, reduction of production costs, better performance, etc.). This is a basic course to understand the relationship between the properties of materials and the design requirements to ensure their proper functioning. The different approaches to design are exposed (strength, stiffness, flexibility, weight, elasticity, plasticity, yield, ductility, crushing, wobble, fatigue, limited fracture, fracture toughness, optical quality, wear, slip, conductors, insulators, dielectrics). , magnetism, durability) and the properties of the materials with which these approaches are associated.

Specific goals for the course

Outcomes of	1. Identify, formulate and solve product performance problems		
instruction	related to materials and/or their manufacture.		
	2. Design components or manufacturing processes of a product to		
	respond to demands or needs taking into account realistic		
	limitations, as well as economic, environmental, social, political,		
	ethical, health and safety, manufacturing and sustainability.		
	3. Communicate effectively by discussing the general aspects of		
	the properties and characteristics of materials, as well as their		
	manufacturing processes.		
	4. Design and conduct experiments, applying data analysis and		
	interpretation to evaluate use and extreme conditions following		
	scientific methodologies and rigorous criteria.		
Student	SO1. Identify, formulate, and solve complex engineering problems		
outcomes	by applying the principles of engineering, science, and		
	mathematics.		
	SO2. Apply the engineering design process to produce solutions		
	that meet specific needs taking into account public health, safety		
	and welfare, as well as global, cultural, social, environmental and		
	economic factors.		
	SO3. Communicate effectively with a variety of audiences.		
	SO6: Develops and conducts appropriate experimentation, in		
	which they analyze and interpret data, as well as use engineering		
	criteria to draw conclusions.		

	Topics
Unit I. Introducti	on: materials, history and characteristics. family trees
Unit III. Strategie	c thinking: adapt the material to the initial design
Unit IV. Stiffnes	s and weight: density and modulus of elasticity
Unit V. Flexing,	buckling and wobbling - limited stiffness design
Unit VI. Beyond	Elasticity: Plasticity, Yield, and Ductility
Unit VII. Bend and Crush: limited strength design	
Unit VIII. Fractu	re and fracture toughness
Unit IX. Shaking	, Rattle, and Wobble: Cyclic Loading, Damage, and Failure
Unit XI. Friction	slide and grip: friction and wear
Unit XII. materia	ils and heat. The use of materials in high temperature conditions
Unit XIV. Condu	ictors, insulators and dielectrics. magnetic materials

Code	INI310	Prerequisites	INI388
Name	Quality Control	Co-requisites	None

Credits	Contact Hours	
04	44	
Categorization of credits		
Math and basic science		
Engineering topic	Х	
Other		

Instructor's course name: Prof. Jessica Pamela Feliz Garrido.ME.

Text book

Barrentine, L. (2012). Concepts for R&R Studies (2nd ed.). American Society for Quality.

Evan, J., & Lindsay, W. (2008). Administration and quality control (7th ed). Cengage Learning

Gallardo Vázquez, S. (2015). Elements of telecommunications systems. Paraninfo Editions. ISBN:8428336636, 9788428336635

Gutiérrez Pulido, H., & De la Vara, R. (2013). Statistical quality control and Six Sigma (3rd ed.). McGraw Hill.

Other supplemental materials

Chrysler Handbook (1989). Using SPC to be the Best. Chrysler Group LLC. Montgomery, D.C. (2001). Introduction to statistical quality control (4th ed.). John Wiley and Sons.

Phadke, M.S. (1989). Quality Engineering using robust design. Prentice Hall

Description
The subject is oriented to the design of systems for quality control and assurance and
implementation of statistical process control. It includes analysis of a process's capacity
and techniques for process improvement, as well as the implementation of Lean Six
Sigma as a project methodology.

Type of course	☑ Required□ Elective
----------------	---

Specific goals for the course		
Outcomes of	1. Defines the problem by identifying all the key internal aspects	
instruction	of the problem and determines all causes of the problem, using	
	some more complex techniques to find these causes or to validate	
	them.	
	2. Proposes several solutions to the problem, selecting the best	
	alternative and elaborates sufficient arguments to justify the	
	selected solution.	
	3. Identifies needs, transforming them into objectives, criteria and	
	constraints with a high level of compatibility, making use of tools,	
	methods and / or engineering systems.	
	4. Generates sufficient alternatives with a high level of correlation	
	with established criteria and restrictions and in conformity with	
	engineering sciences.	

	5 Doutining to a financial of the objectives and their full and the		
	5. Faile plates in the planning of the objectives and their follow-up until the fulfillment in an efficient way, fulfilling the commitments		
	until the fulfillment in an efficient way, fulfilling the commitments		
	and respecting the established deadlines.		
	6. Interacts with team members in an appropriate manner,		
	encouraging and considering the ideas of other members and		
	implementing strategies to avoid and resolve conflicts.		
	7. Sets the objectives of the experiment, conducts the experiment		
	in a comprehensive manner and interprets the data and events that		
	occurred during the experimentation.		
	8. Argues about the results obtained based on the evidence and the		
	analysis of experimentation, explaining the differences between		
	the data obtained and the experimental assumptions,		
	recommending the application of the results and identifying		
	possible risks.		
Student	SO1. Identifies, formulates and solves complex engineering		
outcomes	problems by applying the principles of Engineering, Science and		
	Mathematics.		
	SO2. Apply and use the engineering design process to produce		
	solutions that meet specific needs, taking into consideration public		
	health, safety, and welfare, as well as global, cultural, social,		
	environmental, and economic factors.		
	SO5. Function effectively in a team whose members together		
	provide leadership, create a collaborative and inclusive		
	environment, set goals, plan tasks, and meet objectives.		
	SO6. Develops and conducts appropriate experimentation, in		
	which they analyze and interpret data, as well as use engineering		
	criteria to draw conclusions.		

TopicsUnit I. Introduction to Quality ControlUnit II. Planning. DMAIC Stage DefinesUnit III. Statistical Process Measurement and Control. DMAIC Stage Measure.Unit IV. Other Quality Control ToolsUnit V. Case Analysis and Validation DMAIC Stage AnalyzeUnit VI. Continuous Improvement Methodologies DMAIC Stage ImproveUnit VII. Continuous learning and sustainability. DMAIC Stage Control

Code	INI323	Prerequisites	CON213, INI301
Name	Process Cost Analysis	Co-requisites	None

Credits	Contact Hours	
04	44	
Categorization of credits		
Math and basic science		
Engineering topic	Х	
other		

Instructor's course name:	Heidi Romero
	Alfredo Vicious

Textbook

Horngren, CT, Datar, S., Rajan, MV, Jaime Gómez Mont Araiza, Ángel Rodríguez Gutiérrez Miguel, & amp; Gonzalez Damian Irma. (2012). Contabilidad de Costos: Un Enfoque Gerencial. Pearson Education.

Other supplemental materials

Robinson, A. (1992). Modern Approaches to Manufacturing Management: The Shingo System. Productivity Press.

Faga Héctor Alberto, & amp; Enrique Ramos Mejia Mariano. (2006). Cómo profundizar en el análisis de sus costos para Tomar Mejores Decisiones Empresariales. Granica.

María Arias Alvarez Ana, Cornejo García Beatriz, Cabezas, MA, Antonio Pérez Méndez José, Sánchez Rodríguez Pablo, & amp; Luis Garcia Suarez Jose. (2015). Cálculo, análisis Y gestión de costes: Guía práctica para su aplicación en la empresa. Delta.

Magdalena Arredondo Gonzalez Maria. (2015). Contabilidad y análisis de costos. Larousse - Patria Editorial Group.

Current research articles

Type of course	⊠ Required □ Elective

Specific goals for the course		
Outcomes of	1. Identify and apply cost accounting methods to solve engineering	
instruction	problems.	
2. Formulate and model problems using the cost-volume-		
	model.	
	3. Evaluate data from a mathematical model in order to propose	
	improvement alternatives in a complex engineering problem.	

	4. Design costing systems considering the characteristics of the		
	production process.		
	5. Reflect on their learning experiences, identifying strengths and		
	points for improvement to achieve continuous learning.		
Student	SO1. Identify, formulate, and solve complex engineering problems		
outcomes	by applying the principles of engineering, science, and		
	mathematics.		
	SO6. Develop and conduct appropriate experimentation, analyze		
	and interpret data, and use engineering criteria to draw		
	conclusions.		
	SO7. Acquire and apply new knowledge using appropriate learning		
	strategies		

Topics
Unit I. Fundamentals of Cost Accounting
Unit II. Cost Volume Profit Analysis
Unit III. Costing Systems
Unit IV. Tools for planning and control

Code	INI391	Prerequisites	CBM302
Name	Operational research I	Co-requisites	INI391L

Credits	Contact Hours		
04	44		
Categorization of credits			
Math and basic science			
Engineering topic			
Other			

Instructor's course name:	Karl Corporán Virginia García Fernando Albaine

Text book

Bertsimas, D. and Tsitsiklis, J. (1997). Introduction to Linear Optimization (1st edition). Athena Scientific

Hillier, F., Lieberman, G. (2013). Introduction to Operations Research (9th edition). McGraw Hill.

Taha, H. (2012). Operations Research (9th edition). Pearson.

Winston, W., Bruna, M., Sánchez, F. (2008). Operations Research: Applications and Algorithms (4th edition). Thomson

Other supplemental materials

Ifors (2017). International Transactions in Operations Research. Obtained from http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1475-3995 Report (2017). Transactions on Education reports. Obtained from

http://pubsonline.informs.org/loi/ited

Description This subject covers the use of mathematical optimization models and optimization methods to obtain optimal results when solving these models. In addition, it studies the performance of post-optimality analysis for enriching the results obtained by applying the optimization methods.

Type of course	⊠ Required
Type of course	□ Elective

Specific goals for the course			
Outcomes of	1. Demonstrates punctuality in fulfilling your responsibilities as a		
instruction	student.		
	2. Integrates knowledge from the various areas of industrial		
	engineering knowledge into the development of problem-solving		
	proposals.		
	3. Criticizes and proposes improvements to the solution proposals		
	to optimization problems made by their peers.		
Student	SO2. Apply and use the engineering design process to produce		
outcomes	solutions that meet specific needs, taking into consideration public		
	health, safety, and welfare, as well as global, cultural, social,		
	environmental, and economic factors.		

SO4. Recognizes ethical and professional responsibilities in		
engineering situations and makes informed judgments considering		
the impact of engineering solutions in global, economic,		
environmental and social contexts.		
SO7. Acquire and apply new knowledge using appropriate learning		
strategies.		

Unit I. Introduction to Operations Research Unit II. Modeling Unit III. Optimization Methods Unit IV. Post-Optimality Analysis

Code	INI391L	Prerequisites	INI382 INI382L ING302
Name	Operations Research Laboratory I	Co- requisites	INI-391

Credits	Contact hours
01	22
Categoriza	ation of credits
Math and basic science	
Engineering topic	Х
Other	

Instructor's course name: Fernando Albaine

Textbook

Frye, C (2016). Microsoft Excel 2016 Step by Step: Practice Files

Ojeda, FC (2016). Microsoft Office Excel 2016 Advanced Manual. Madrid, Spain: Anaya Multimedia

Winston, Wayne (2016). Microsoft Excel Data Analysis and Business Modeling 5th Ed: Microsoft.

Other supplementary materials

Edwin O. (Producer). (2016). Excel 2016.

https://www.youtube.com/playlist?list=PLNXKSKL0wyTL1WgcYIoZ8tYBCQblXsvJZ

Indigo Tutorial. (Producer). (2016). Excel Tutorials.

https://www.youtube.com/playlist?list=PLxgQzwsFLGL2FJhmBNZ8EW7Zn7-OqBlHI

Description

In today's world, the Industrial Engineering professional must be able to use spreadsheet tools and optimization techniques to develop efficient and effective solutions.

The course is divided into an introduction to advanced spreadsheet functions and their application in Industrial Engineering, and the use of " Solver " to solve Linear Programming problems.

Learning will take place mainly through the execution of practices guided by the teacher and practices executed individually by the student. The development of competencies will be evaluated with the use of checklists, rubrics, and objective tests.

Type of course \Box Elective

Specific goals for the course		
Outcomes of	1. Integrate the knowledge of the different areas of knowledge of	
instructions	industrial engineering in the development of proposals for the	
solution of problems.		
	2. Criticize and propose improvements to the proposals for	
	solutions to optimization problems made by their peers	

Student	SO2. Apply and use the engineering design process to produce
outcomes	solutions that meet specific needs, taking into consideration public
	health, safety, and welfare, as well as global, cultural, social,
	environmental, and economic factors.

Unit I. Pivot Tables Unit II. Create and run macros Unit III. Creation of Forms Unit IV. Manipulation Modules with Variables Unit V. Introduction to Solver Unit VI. Solver Reports and Sensitivity Analysis Unit VII. Transportation Model Unit VIII. Allocation Model Unit IX. Integer Programming Models

Code	INI392	Prerequisites	INI307
Name	Production Design Systems II	Co- requisites	INI392L

Credits	Contact hours	
04	44	
Categorization of credits		
Math and basic science		
Engineering topic	Х	
Other		

Instructor's course name: Jose Gabriel Lavayen Cruz

Text book

Tompkins, J., While, J., Bozer, Y., & Tanchoco, JM (2011). Facilities Planning (4th. Edition). Cengage Learning.

Meyers, FE, Stephens, MP, & Brito, JE (2006). Design of manufacturing facilities and material handling. PearsonEducation.

Heizer, J. & Render, B. (2014). Principles of Operations Management – Fifth Edition. Pearson Education.

Other supplementary materials

Orozco, E.E., & Cervera, J.E. (2013). Design and Distribution of Industrial Facilities supported by the use of Process Simulation. Research and Innovation in Engineering, 1(1).

Hernandez, JC and Vizán, A. (2013). Lean Manufacturing Concepts, Techniques and Implementation. EOI Foundation

Lunau, S. (2009). Design for Six Sigma + Lean Toolset. Springer.

Description Through this subject it is intended that the student develops the ability to design a facility, applying material flow concepts for said facility (manufacturing and services) and the optimal location of the different components of the system.

Type of course	⊠ Required
Type of course	□ Elective _

	Specific goals for the course
Outcomes of	1. Define the problem by identifying all its key internal aspects:
instruction	objectives, metrics, process flow that contains the problem, inputs
	and outputs of each stage of the process, among others.
	2. Select the best solution by using complex methods (as needed),
	according to the problem definition and within multiple previously
	identified alternatives.
	3. Prepare sufficient arguments to justify the selected solution
	where a strong correlation between the arguments and the criteria
	established in the definition of the problem is evidenced.
	4. Generate sufficient alternatives with a high level of correlation
	with the established criteria and restrictions, in accordance with the
	engineering sciences and considering health, welfare and safety.

	5. Select the best alternative by effectively applying decision-making methodologies and based on the established design constraints.6. Create the plans, procedures, specifications, as well as other means of communication of the design, following norms or standards of engineering in general.
Student _ outcomes	SO1. Identify, formulate, and solve complex engineering problems by applying the principles of engineering, science, and mathematics. SO5. Function effectively in a team whose members together provide leadership, create a collaborative and inclusive environment, set goals, plan tasks, and meet objectives. SO6. Develops and conducts appropriate experimentation, in which they analyze and interpret data, as well as use engineering criteria to draw conclusions.

Unit I. Introduction Unit II. Design of Products, Processes and Programs Unit III. The Flow, Space and Relationships of Activities Unit IV. Personnel Requirements Unit V. Material Handling Unit VI. Design Layout Planning Models Unit VII. Warehouse Operations Unit VIII. Facility Location

Code	INI392L	Prerequisites	INI307
Name	Production Systems Design Laboratory II	Co-requisites	INI392

Credits	Contact Hours	
02	22	
Categorization of credits		
Math and basic science		
Engineering topic	Х	
Other		

Instructor's course name: Ing. Cristian Rodriguez

Text book

Tompkins, J., While, J., Bozer, Y., & Tanchoco, JM (2011). Facilities Planning (4th. Edition). Cengage Learning.

Meyers, FE, Stephens, MP, & Brito, JE (2006). Design of manufacturing facilities and material handling. Pearson Education.

Heizer, J. & Render, B. (2014). Principles of Operations Management – Fifth Edition. Pearson Education.

Other supplemental materials

Orozco, E.E., & Cervera, J.E. (2013). Design and Distribution of Industrial Facilities supported by the use of Process Simulation. Research and Innovation in Engineering, 1(1).

Hernandez, JC and Vizan, A. (2013). Lean Manufacturing Concepts, Techniques and Implementation. EOI Foundation

Lunau, S. (2009). Design for Six Sigma + Lean Toolset. Springer

Description

The Production Systems Design Laboratory II is a practical subject where students acquire the basic knowledge to develop simulation models of real and proposed situations, using Flexsim, which allow them to evaluate the performance of production processes and/or services. In it, students will acquire competencies in the identification of components of a model, knowledge of basic structures of a discrete event simulator.

Similarly, students will be able to recognize steps to follow in a discrete event simulation study, understand the importance of simulation in the study of complex systems, apply basic knowledge of modeling and simulation using Flexsim, use library of objects to represent service, material handling, process flow, and manufacturing systems and perform simulation experiments using Flexsim software.

Specific goals for the course		
Outcomes of	1. Define the problem by identifying all its key internal aspects:	
instruction	objectives, metrics, process flow that contains the problem, inputs	
	and outputs of each stage of the process, among others.	
	2. Select the best solution by using complex methods (as needed),	
	according to the problem definition and within multiple previously	
	identified alternatives.	

	3. Prepare sufficient arguments to justify the selected solution		
	where a strong correlation between the arguments and the criteria		
	established in the definition of the problem is evidenced.		
	4. Generate sufficient alternatives with a high level of correlation		
	with the established criteria and restrictions, in accordance with		
	engineering sciences and taking into account health, welfare and		
	safety.		
	5. Select the best alternative by effectively applying decision-		
	making methodologies and based on the established design		
	constraints.		
	6. Create the plans, procedures, specifications, as well as other		
	means of communication of the design, following norms or		
	standards of engineering in general.		
Student	SO1. Identify, formulate, and solve complex engineering problems		
outcomes	by applying the principles of engineering, science, and		
	mathematics.		
	SO2. Apply and use the engineering design process to produce		
	solutions that meet specific needs, taking into consideration public		
	health, safety, and welfare, as well as global, cultural, social,		
	environmental, and economic factors.		
	SO6. Develops and conducts appropriate experimentation, in		
	which they analyze and interpret data, as well as use engineering		
	criteria to draw conclusions.		

Unit I. Know	ing Flexsim
Unit II. Dupl	icate objects, Effects of adding more services, use of "Send to port" Unit
III. Use of lal	pels
Unit IV. Use	of the "Pull" System and definition of routes
Unit V. Use o	of "Global Tables"
Unit VI. Use	of Operators
Unit VII. Use	e of "Break to"

Code	INI316	Prerequisites	INM377 INI392
Name	Industrial Safety and Hygiene	Co-requisites	None

Credits	Contact Hours		
02	22		
Categorization of credits			
Math and basic science			
Engineering topic	Х		
Other			

Instructor's course name: Fabio Sanchez

Text book Asfahkl, C.R. (s/f) Industrial Safety and Health (4th edition). Prentice-Hall. Other supplemental materials

Blake, R.P. (s/f). Industrial Safety. Edit. Diana

Friar Cantalejo, D. (s/f). Safety and Health. Professional Risks (Volumes I and II). Social Service for Occupational Health and Safety.

Ministry of Labor of the Dominican Republic. RD Occupational Safety and Health Regulations, 522-06. Ministry of Labor.

Prevention of Occupational Risks, Master's Manuals taught by Universidad La Coruña-Intec.

Description

This course will give the necessary tools so that the student can understand, develop and implement an Occupational Risk Prevention system in any type of business activity. Through it, the student will develop the ability to design, implement, manage, evaluate and improve Industrial Safety and Hygiene systems in search of that all employees of a company can know correctly how to face the Occupational Risks. This will motivate each employee to join the Preventive Activity, thereby reducing the Incidence Rate of Accidents and Occupational Diseases.

Type of course	⊠ Required
Type of course	□ Elective

Specific goals for the course		
Outcomes of	1. Identifies needs and converts them into goals, criteria and design	
instruction	constraints	
	2. Generates alternatives supported in engineering sciences, social	
	sciences, economics among others, selecting the best.	
	3. Creates specifications, prototypes or other means of design	
	communication.	
	4. Develops solutions according to the current reality, taking into	
	account ethical and professional responsibility.	
	5. Evaluates the consequences of the impact of engineering	
	decisions in contexts (economic, environmental and social) at	
	global, regional and local levels.	
	6. Recognizes copyright in the particular solutions developed.	
	7. Plan strategies for meeting goals.	

	 8. Interact with team members, open to the opinions of others. 9. Identifies your role as a member within the work team for the achievement of the objectives. 10. Identifies the need to acquire new knowledge, relating them to a learning strategy. 11. Uses various methods and tools to obtain information relevant to new knowledge. 	
Student outcomes	 to new knowledge. SO2. Apply and use the engineering design process to produce solutions that meet specific needs, taking into consideration public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors. SO4. Recognize ethical and professional responsibilities in engineering situations and makes informed judgments considering the impact of engineering solutions in global, economic, environmental, and social contexts. SO5. Function effectively in a team whose members together provide leadership, create a collaborative and inclusive environment, set goals, plan tasks, and meet objectives.CG4- SO7. Acquire and apply new knowledge using appropriate learning strategies 	

T	•
10	nics.
10	pres.

Unit I. Conceptions of Work and Health Unit II. Industrial Hygiene Unit III. Prevention of Occupational Risks Unit IV. Causes and Consequences of Accidents and Incidents Unit V. Risks of losing health in occupations Unit VI. Use of Personal Protective Equipment Unit VII. Fire: Causes and Consequences Unit VIII. Signage as a fundamental tool of preventive activity Unit IX. Study of Manual 522-06 on Safety and Health at Work

Code	INI385	Prerequisites	INE354, INE354L, ING215, INM377, INM377L
Name	Process Automation	Co-requisites	INI385L

Credits	Contact Hours		
4	44		
Categorization of credits			
Math and basic science			
Engineering topic	Х		
Other			

Prof. José Rafael Silva Archetti

Text book

Training, F., (2015), Installation of equipment and elements of industrial automation systems, IC Editorial.

Perez et al, (2018), Automation systems and programmable automata 3rd edition, Marcombo.

Piedrafita, R., (2004), Industrial automation engineering (2nd edition extended and updated), Spain, Ra-ma.

Other supplemental materials

Alvarez, D., (2015), Manual of hydraulics, pneumatics and PLC programming: Industrial automation, Mexico, Mexican Robotics and Mechatronics Association. D'Addario, M., (2017), Industrial Automation - Technology, Representation and Functions - Volume I, Createspace.

Manufactured by: Made In Spain [TV series] (2013) Spain: Mediapro, Radiotelevisión Española.

Description

Process automation is a project-oriented subject, where students will learn to develop control systems for the automation of industrial processes or improve existing ones. The student must employ design and troubleshooting methods to create or improve a small-scale industrial process that meets the needs, in order to manufacture a product automatically. It is important to know that the development of the project is carried out in different stages (mechanical, electrical and programming), which allows the student to develop technical skills such as: production line elaboration, design and installation of control systems, elaboration of ladder diagram and mnemonic code based on Programmable Logical Controllers (PLC) in order to automate a process.

Type of course	⊠ Required □ Elective

Specific goals for the course		
Outcomes of instruction	 It defines the problem by identifying all the key internal aspects of it: objectives, metrics, flow of the process containing the problem, inputs and outputs of each stage of the process, among others. It identifies all causes of the problem using complex techniques 	
	to find the causes of the problems or to validate them.	

id 4. wl es 5. cr us 6. co wi an 7. m co 8. m	entified alternatives. It elaborates sufficient arguments to justify the selected solution here a strong correlation between the arguments and the criteria tablished in the definition of the problem is evidenced. Identifies production needs and transforms them into objectives, iteria and constraints with a high level of compatibility, making se of engineering tools, methods and/or systems. It generates sufficient alternatives with a high level of prrelation with established criteria and restrictions, in conformity ith engineering sciences and taking into account health, welfare nd safety. Select the best alternative by effectively applying decision- taking methodologies and based on established design onstraints. Create drawings, procedures, specifications, as well as other teans of design communication, following general engineering andards or norms
Student SC outcomes pr M SC so he	 D1. Identifies, formulates and solves complex Engineering roblems through the application of Engineering, Science and lathematics principles. D2. Apply and use the engineering design process to produce plutions that meet specific needs, taking into consideration public ealth, safety, and welfare, as well as global, cultural, social,
en	ivironmental, and economic factors.

Unit I. Introduction to Automation Unit II. Industrial Sensors Unit III. Industrial actuators Unit IV. Introduction to Pneumatics and Hydraulics V. PLC Based Control Unit

Code	INI385L	Prerequisites	INE354, INE354L, ING215, INM377, INM377L
Name	Process Automation Lab	Co-requisites	INI385

Credits	Contact Hours		
01	22		
Categorization of credits			
Math and basic science			
Engineering topic	Х		
Other			

Prof. José Rafael Silva Archetti

Text book

Training, F., (2015), Installation of equipment and elements of industrial automation systems, IC Editorial.

Other supplemental materials

Silva, J., (2017), Laboratory Manual Industrial Automation, Santo Domingo, Dominican Republic, INTEC.

Alvarez, D., (2015), Manual of hydraulics, pneumatics and PLC programming: Industrial automation, Mexico, Mexican Robotics and Mechatronics Association.

D'Addario, M., (2017), Industrial Automation - Technology, Representation and Functions - Volume I, Createspace.

Manufactured by: Made In Spain [TV series] (2013) Spain: Mediapro, Radiotelevisión Española.

Description

Process automation laboratory is a practice-oriented subject where the student will develop skills to design and install multiple elements of a control system for the automation of industrial processes or improve existing ones.

Each student will acquire practical knowledge about the use of devices and their individual behavior to automate small processes, using relays, electric motors, pneumatic valves, single and double effect pneumatic cylinders, industrial sensors and switches.

For the automation of larger and more complex processes, the student will learn to use Programmable Logical Controllers (PLCs), developing ladder diagrams, mnemonic codes and electrical connection diagrams for the interconnection of the PLC with peripheral devices.

Type of course	⊠ Required
Type of course	□ Elective

Specific goals for the course		
Outcomes of instruction	 It defines the problem by identifying some of the key insights. It identifies some of the causes of the problem, using some complex techniques to find the causes of the problems or to validate them. 	

	3. It proposes solutions to the problem using basic principles and
	methods of engineering.
	4. It develops sufficient arguments to justify the selected solution,
	taking into account the criteria established in the problem
	definition.
	5. Clearly identifies needs and may set limited design objectives,
	criteria and constraints.
	6. It generates sufficient design alternatives, with some level of
	correlation with established criteria and restrictions and weakly
	supported in engineering sciences or other sciences.
	7. Please select alternatives taking into account some restrictions.
	8. Communicates design in a limited way by omitting some
	engineering standards and norms.
Student	SO1. Identifies, formulates and solves complex engineering
outcomes	problems by applying Engineering, Science and Mathematics
	principles.
	SO2. Apply and use the engineering design process to produce
	solutions that meet specific needs, taking into consideration public
	health, safety, and welfare, as well as global, cultural, social,
	environmental, and economic factors.

Unit I. Fishertechnik parts Unit II. Wired Logic I Unit III. Wired Logic II Unit IV. Pneumatics Unit V. PLC unit

Code	INI393	Prerequisites	INI391 INI391L
Name	Operational Research II	Co-requisites	INI393L

Credits	Contact Hours		
04	44		
Categorization of credits			
Math and basic science			
Engineering topic	Х		
Other			

Heidi Romero, Arturo del Villar

Text book

Kelton, W.D., Sadowski, R.P., Swets, N.B. (2014) Simulation with Arena. McGraw-Hill Education.

Rossetti, M.D. (2015) Simulation Modeling and Arena. Willey Publishers.

Shortel, J.F., Thompson, J.M., Gross, D., Harris, C.M. (2018) Fundamentals of Queueing theory. Willey Publishers.

Taha, H.A. (2016) Operations Research. Pearson Prentice Hall.

Other supplemental materials

Altiok, T., Melamed, B. (2010) Simulation Modeling and Analysis with ARENA. Elsevier.

Diaz Redondo, R.P., Pazos Arias, J.J., Fernández Vilas, A. (2010) Problems of Tail Theory. Andavira Editor.

Description

At present, one of the major challenges of the industry is the need to optimize the use of resources used for the production of goods or services. This subject emphasizes the analysis and design of stochastic models to evaluate performance and propose alternatives for improvements in manufacturing processes and services, using engineering criteria to draw conclusions.

The course content covers the basic concepts of system simulation, process modeling, verification and validation of results through the use of statistical tests. Finally, it includes the classification of the models of queue theories using the Kendall nomenclature, describing their characteristics and their application in solving practical problems.

Type of course	⊠ Required
Type of course	□ Elective

Specific goals for the course		
Outcomes of	1. Identifies and applies optimization methods to solve engineering	
instruction	problems using stochastic variables.	
	2. Formula and model problems using stochastic variables.	
	3. It evaluates data from a mathematical model in order to propose	
	alternatives for improvements in a complex engineering problem.	
	4. Design systems, components or processes by modeling and	
	simulating discrete events.	

	5. It reflects on their learning experiences, identifying strengths and points of improvement to achieve continuous learning.6. Interprets and evaluates the results of a simulation model through the use of statistical tests.
Student outcomes	 SO1. Identifies, formulates and solves complex Engineering problems by applying the principles of Engineering, Science and Mathematics. SO6. Develops and conducts appropriate experimentation, in which they analyze and interpret data, as well as use engineering criteria to draw conclusions. SO7. Acquire and apply new knowledge using appropriate learning strategies.

Topics
Unit I. Introduction to System Simulation
Unit II. Simulation Models
Unit III. Queue Theory

Code	INI393L	Prerequisites	INI391 INI391L
Name	Operational Research Laboratory II	Co-requisites	INI393

Credits	Contact Hours	
01	22	
Categorization of credits		
Math and basic science		
Engineering topic	Х	
Other		

Instructor's course name:	Prof. Karl Corporan

Text book

Kelton, Sadowski & Sturrock (2008). Simulation with Software Arena (4th Edition) Taha, H. (2012). Operations Research 9th Edition. Pearson.

Hillier, F. & Lieberman, G. (2013). Introduction to Operations Research (9th edition). McGrawHill.

Winston, W. Bruna, M. & Sanchez, F. (2008). Operations Research: Applications and Algorithms (4th Edition). Thompson

Other supplementary materials

Ifors (2018). International Transactions in Operatios Research. Retrieved from http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1475-3995

Reports (2018). Reports Transactions on Education. Retrieved from http://pubsonline.informs.org/loi/ited

Description

This course covers the use of computational models and simulation for the analysis, proposal of solutions and evaluation of the same in engineering problems based on mathematics, science and engineering criteria.

This subject contains the topics of Montecarlo Simulation, Computational Simulation and Simulation of Queues. It is supported by the use of specialized software in Spreadsheets and Simulation Discreet.

Type of course	⊠ Required
Type of course	□ Elective

Specific goals for the course		
Outcomes of	1. Set the objectives of the experiment and select the critical	
instruction	factors, as well as all the answers relevant to the experiment.	
	2. Plan and conduct the experiment comprehensively, observing	
	and interpreting the behavior of variables throughout the runs.	
	3. Argue the results obtained based on the evidence and in the	
	analysis of experimentation, making recommendations the	
	application of the	
	results.	
Student	SO6. Develop and conduct appropriate experimentation, analyzes	
outcomes	and interprets data, and uses engineering criteria to draw	
	conclusions.	

F	•
101	DICS
10	

Unit I. Introduction to simulation Unit II. Basic Computer Simulation Unit III. Running a simulation project Unit IV. Simulation animation

Code	INI394	Prerequisites	INI310
Name	Design of Experiments	Co-requisites	INI394L

Credits	Contact Hours	
4	44	
Categorization of credits		
Math and basic science		
Engineering topic	Х	
Other		

Instructor's course name: Demetrio Mota

Text book

Gutiérrez Pulido, H. (2013). Analysis and design of experiments (Third edition). McGraw Hill.

Gonzalez, R. (2018). Design of Experiments: Elements (Second edition). Amazon. Montgomery, D.C. (2015). Design and Analysis of Experiments (Second Edition). Limusa Wiley

Peña, D. (2010). Regression and Design of Experiments (Second Edition). Publishing Alliance

Walpole, R. (2007). Probability and statistics for engineering and science (8th edition). Pearson.

Other supplemental materials

Description

This subject provides the student with the techniques and tools of Statistics that allow them to establish a relationship between the elements of inputs of a process (critical parameters of materials and critical parameters) and the elements of output of the same (The Attributes of quality).

The information generated by the use of this instrument will allow you to make decisions on fundamental topics of Industrial engineering such as product design, selection of options, design of effective processes, the search for solutions to quality problems (CAPA), quality by design (Quility by Design), through the methods of Taguchi, process validation and process efficiency through Response surface.

|--|

Specific goals for the course		
Outcomes of	1. Know the techniques that make up the Design of Experiments.	
instruction	2. Recognizes the situations in which you can apply the different	
	tools of Experimental Design.	
	3. Generate sufficient alternatives to solve the problem	
	4. Sets the parameters that determine the responses of processes.	
	5. Objectively select the best solution from the solutions generated	
	by the model.	
	6. Adequately communicates the appropriate arguments justifying	
	your choice.	

	7. Design control systems that ensure your solution works properly
	over time
Student	SO1. Identifies, formulates and solves complex Engineering
outcomes	problems by applying the principles of Engineering, Science and
	Mathematics.
	SO2. Apply and use the engineering design process to produce
	solutions that meet specific needs, taking into consideration public
	health, safety, and welfare, as well as global, cultural, social,
	environmental, and economic factors.
	SO6. Develops and conducts appropriate experimentation, in
	which they analyze and interpret data, as well as use engineering
	criteria to draw conclusions.
	SO7. Acquire and apply new knowledge using appropriate learning
	strategies.

Unit I. Single Factor Experiments Unit II. Factorial Experiments Unit III. Regression and Experimental Design of Taguchi Unit IV. Process Optimization with Response Surface Unit V. Special Experiment Design Cases

Code	INI394L	Prerequisites	INI310
Name	Design of Experiments Laboratory	Co-requisites	INI394

Credits	Contact Hours		
1	22		
Categorization of credits			
Math and basic science			
Engineering topic	Х		
Other			

Instructor's course name: Omar Aponte Contreras, M.E.

Text book

Go on, O. (2019). General instructions about the subject. Academic presentation. Gutiérrez Pulido, H., & Vara Salazar, R. d. l. (2008). Analysis and design of experiments (2nd ed. —.). McGraw Hill.

Montgomery, D.C. (2005). Design and Analysis Of Experiments (2a. Ed.). Limusa Wiley.

Other supplemental materials

Minitab Inc. (2007). Meet Minitab 15 for Windows. United States. Go on, O. (2019). Basic experimentation with Minitab. Academic presentation.

Description

Design and statistical analysis of experiments, to identify the effect on a response variable that has the change in the different levels of factors of a process. The course covers specific topics of the industrial engineering career, based on the application of statistical knowledge as a tool to optimize processes and/or systems.

The content of the subject begins by addressing what is the Introduction to Design Experiments. And then we move on to the topic Statistical inference. We will perform what are Factor Experiments; Block Factor Experiment; Factorial Experiment; 2k Factorial Design; 2k Factorial Design with Block and Melt; 2k Fractional Factorial Design.

Type of course	🗵 Required
Type of course	□ Elective

Specific goals for the course			
Outcomes of	1. Know the techniques that make up the Design of Experiments.		
instruction	2. Recognizes the situations in which you can apply the different		
	tools of Experimental Design.		
	3. Generate sufficient alternatives to solve the problem.		
	4. Sets parameters that determine process responses		
	5. Objectively select the best solution from the solutions generated		
	by the model		
	6. It adequately communicates the appropriate arguments		
	justifying its choice.		
	7. Design control systems that ensure your solution works proper		
	over time		

Student	SO1. Identifies, formulates and solves complex Engineering		
outcomes	problems through the application of Engineering, Science and		
	Mathematics principles.		
	SO2. Apply and use the engineering design process to produce		
	solutions that meet specific needs, taking into consideration public		
	health, safety, and welfare, as well as global, cultural, social,		
	environmental, and economic factors.		
	SO6. Develops and conducts appropriate experimentation, in		
	which they analyze and interpret data, as well as use engineering		
	criteria to draw conclusions.		
	SO7. Acquire and apply new knowledge using appropriate learning		
	strategies.		

Unit I. Introduction to the Design of Experiments.

Unit II. Statistics Review.

Unit III. Experiments manipulating a single factor.

Unit IV. Experiments designed using blocks. Unit V. Multifactorial experiments.

Unit VI. Multifactorial experiments with two levels (2^k). Unit VII. Fractionated multifactorial experiments (2^k-p).

Code	IIN301	Prerequisites	INI393, INI393L INI392, INI392L
Name	Supply Chain Engineering	Co-requisites	None

Credits	Contact Hours		
04	44		
Categorization of credits			
Math and basic science			
Engineering topic	Х		
Other			

Layna Santana

Text book

Alfalla Lique, R. (2016). Strategic management of the supply chain. (1st ed.). Pacific University.

Chopra, S., Meindl, P. (2015). Supply Chain Management: Strategy, Planning, and Operation. Pearson Education.

Christopher, M. (2016). Logistics & Supply Chain Management. (5th Ed.). Publishing Financial Times.

Sabria, F. (2016) Supply Chain. (3rd ed.). Marge Books.

Other supplemental materials

Pawar K, Rogers H, Potter A, Naim M (2016). Developments in Logistics and Supply Chain Management: Past, Present and Future. UK: Palgrave Macmillan.

Santon, D. (2017). Supply Chain Management for Dummies. Business & Economics. Velasco, J. (2013). Gestión de la logística en la empresa: Planificación de la cadena de suministros (Economía Y Empresa). Pirámide.

Description

Supply chain engineering aims to analyze the activities of planning, operation and control of the flow of materials and products, in order to propose strategies that reduce inventory levels and increase the level of service for the end customer. At the end of this program the student is expected to be able to evaluate, design and recommend improvements for the optimization of the supply chain.

The content of this subject includes the different logistics processes that are part of the supply chain, such as: demand forecasting, statistically analyzing the behavior of demand for the operations area, maintaining a balance with the commercial area; production planning, indicating what, when and how much to produce; And storage, what should be the optimal inventory levels, and the location of storage points.

|--|

Specific goals for the course			
Outcomes of	1. Apply the techniques and tools for the design and configuration		
instruction	of distribution networks.		

	2. Design integrated systems that include the planning, operation		
	and control of the flow of materials and products, using models to		
	define the balance between logistics decisions and service levels.		
	3. Contrast the advantages and disadvantages of the different		
	logistics decisions that take place in the supply chain.		
	4. Work collaboratively with groups of students to develop		
	projects.		
	5. Show a critical, purposeful and proactive attitude in the oral		
	presentations of their projects.		
Student	SO2. Apply the engineering design process to produce solutions		
outcomes	that meet specific needs considering public health, safety and		
	welfare, as well as global, cultural, social, environmental and		
	economic factors.		
	SO4. Recognize ethical and professional responsibilities in		
	engineering situations and makes informed judgments considering		
	the impact of engineering solutions in global, economic,		
	environmental, and social contexts.		
	SO5. Function effectively in a team whose members together		
	provide leadership, create a collaborative and inclusive		
	environment, set goals, plan tasks, and meet objectives.		
	SO7. Acquire and apply new knowledge using appropriate learning		
	strategies.		
L			

topics
Unit I. Introduction to the Supply Chain
Unit II. Supply chain management
Unit III. Supply Chain Optimization

Code	INI378	Prerequisites	INI310, INI393, INI393L
Name	Systems Planning and Control	Co- requisites	None

Credits	Contact hours
04	44
Categoriza	ation of credits
Math and basic science	
Engineering theme	Х
Other	

Alfredo Vicioso

Textbook

Chase, RB, Aquilano, NJ, Jacobs, FR (2006). Production and Operations Management, for a competitive advantage. (10th edition). McGraw Hill.

Gaither, N., Frazier, G. (2005). Production and Operations Management. (8th edition) Thomson.

Heizer, J., Render, B. (2001). Production Management: tactical decisions. (6th edition). Prentice Hall.

Nahmias, S. (2007). Analysis of production and operations. (5th edition). McGraw Hill. Schroeder, R.G. (2006). Operations Management: Concepts and contemporary cases. (2nd edition). McGraw Hill.

Vollmann, T. E., Berry, W. L., Whybark, D. (2005). Production Planning and Control: Supply Chain Management. (5th edition). McGraw Hill.

Other supplementary materials

YouTube audiovisual material related to the program.

Description

The system planning and control subject provides the necessary tools for the student to be able to design, implement, manage, and control production systems for both manufacturing and services. At the end of the course, the student is expected to be able to calculate, create demand forecasting models, identify opportunities in a manufacturing and service planning and control system, design materials planning systems, make improvements to the supply chain, from the planning of each one of the elements that intervene in it.

Specific goals for the course		
Outcomes of	1. Systemically define the problem, identify all internal and	
instruction	external aspects, such as: impact of the problem on other areas,	
	interested parties and their requirements, functions required to	
	solve the problem, among others.	
	2. Evaluate the effectiveness of alternatives using the appropriate	
	information and techniques.	

	 Select the best alternative by effectively applying decision- making methodologies and based on the established design constraints Identify needs and transform them into objectives, criteria, and restrictions with a high level of compatibility, using tools, methods and/or engineering systems Interact with team members appropriately, encouraging and considering other members' ideas, while applying strategies to avoid, mediate, and resolve conflicts. Interpret the data from the intensive use of multiple analysis tools.
Student outcomes	 SO1. Identify, formulate, and solve complex engineering problems by applying the principles of engineering, science, and mathematics. SO2. Apply the engineering design process to produce solutions that meet specific needs considering public health, safety and welfare, as well as global, cultural, social, environmental and economic factors. SO5. Function effectively in a team whose members together provide leadership, create a collaborative and inclusive environment, set goals, plan tasks, and meet objectives. SO6. Develops and conducts appropriate experimentation, in which they analyze and interpret data, as well as use engineering criteria to draw conclusions.

Unit I. Introduction to Operations Planning and Control Unit II. Forecasts Unit III. Inventory Management for Independent Demand models Unit IV. Manufacturing Planning Unit V. Material Requirements Planning (MRP) Unit VI. Just-in-Time (JIT) Production Systems

Code	INI395	Prerequisites	INM377 INM377L
Name	Design for Manufacturing	Co-requisites	None

Credits	Contact Hours	
4	44	
Categorization of credits		
Math and basic science		
Engineering topic	Х	
Other		

Instructor's course name:	Carlos Artílez, MEng, PMP.

Text book

Cross, N. (1999). Design methods: strategies for product design. Limusa-Noriega Editores.

Ulrich, K. T. & Eppinger, S. D. (2013). Product Design and Development (5th ed.). McGraw-Hill. 434p.

Other supplemental materials

Aguayo González, F., & Soltero Sánchez, V. M. (2003). Industrial design methodology: an approach from concurrent engineering. Ra-Ma. 631 p.

Lerma Kirchner, A.E. (2004). Product Development Guide: A Global Approach (3rd ed.). Thomson XIII, 230 p.

Project Management Institute (2017). A Guide to Project Management Body of Knowledge (PMBOK® Guide) (6th ed.). ISBN: 978-1-62825-184-5.

Thomke, S. H., & Nimgade, A. (2000). IDEO Product Development (Harvard Business School Case 9-600-143).

Description This subject seeks to introduce the aspiring Engineer to the process of product development, integrating several concepts and engineering tools, following a structured methodology of concurrent engineering.

Type of course	⊠ Required
Type of course	□ Elective

Specific goals for the course			
Outcomes of	1. Appropriately uses the main concepts of science and engineering		
instruction	for problem solving.		
	2. Summarizes the characteristics of the most important materials		
	and their manufacturing processes knowing the effects of		
	manufacturing processes on design.		
	3. Participates in the planning of objectives, the monitoring and		
	fulfillment of these.		
	4. Interact with team members in a good way, considering the ideas		
	of other members and applying strategies to avoid and resolve		
	conflicts.		
	5. It uses various methods and tools to obtain relevant information		
	and data.		

	6. Interprets test results according to product specifications, assessing conformity to quality and/or competitiveness		
	requirements.		
Student	SO1. Identify, Formula, and Solve complex engineering problems		
outcomes	by applying Engineering, Science, and Mathematics principles.		
	SO2. It applies the engineering design process to produce solutions		
	that meet specific needs taking into account public health, safety		
	and welfare, as well as global, cultural, social, environmental and		
	economic factors.		
	SO4. Recognizes ethical and professional responsibilities in		
	engineering situations and makes informed judgments considering		
	the impact of engineering solutions in global, economic,		
	environmental and social contexts.		
	SO7. Acquire and apply new knowledge as required, using		
	appropriate learning strategies.		

Unit I. Introduction to Development Processes and Identification of Opportunities Unit II. Product Planning Unit III. Raising Needs Unit IV. Product Requirements Unit V. Concepts Generation Unit VI. Selecting and Validating Concepts Unit VII. Product Architecture and Industrial Design Unit VIII. Design for X Unit IX. Construction and Testing of Prototypes Unit X. Intellectual Property and Product Economics

Code	IIN302	Prerequisites	None
Name	Human Management in the Industry	Co-requisites	None

Credits	Contact Hours	
02	22	
Categorization of credits		
Math and basic science		
Engineering topic	Х	
other		

Perla Cuevas

Text book

Chiavenato, I. (2017). Human resources management. (10th ed.). McGraw-Hill.

Cummings, Thomas G.; Worley, Christopher G. (2007) Organizational development and change. (8th ed. Spanish 10ed. in English). Publisher Cengage Learning Latin America.

Dessler, G. (2009). Staff Administration. (11th ed.). Prentice Hall.

Mondy, W., Noe, R.M. (2005). Human resources management. (9th ed.). Prentice Hall. Ulrich, David; (1997). Human Resources Champion. (1st Ed). Granica Editions, S.A. Robbins Stephen P., (2017). Organizational Behavior, Theory and Practice. (10th ed.). Publisher Prentice Hall.

Spenser, Johnson; (2002). Who has taken my cheese. (41st edition). Editorial Active Company.

Other supplemental materials

Hateley, Barbara; Schmidt, Warren H.; (nineteen ninety-five). "A peacock in the world of penguins". Publisher Norm.

Description

The concept of human management in the industry has evolved over time from dealing with mediating between the relationship between the worker and employer until today understanding the importance of seeing a relationship of cooperation and mutual benefit and of seeing the human being beyond a resource needed to operate.

Human management in industry is a theoretical subject that presents the aspects to consider for the management of people in an organization, considering relevant aspects of the processes of the human resources function, as well as the knowledge provided by Human Behavior research. in organizations, as well as the management of planned changes or Organizational Development.

Type of course	⊠ Required
Type of course	□ Elective

	Specific goals for the course
Outcomes of instruction	 Understand the role of people in the organization and the importance of managing them as people, and not just as resources, with ethical and socially responsible practices, in diverse and inclusive environments, to ensure the achievement of organizational strategies and objectives. Manage processes and apply methodologies considered best practices to manage people in the work environment and the role.

	that levels of supervision and human management professionals
	play in organizations.
	3. Promote constructive communication, practicing active listening
	to understand the other and clearly and timely transmitting the
	information required by others in order to achieve organizational
	objectives, build contact networks and resolve conflicts that may
	arise in work teams
Student	SO3. Communicate effectively with a variety of audiences.
outcomes	SO5. Function effectively in a team whose members together
	provide leadership, create a collaborative and inclusive
	environment, set goals, plan tasks, and meet objectives.

Unit I. Organizational Structures

Unit II. Job Descriptions and Performance Evaluation Systems

Unit III. Motivation and Incentive Systems

Unit IV. Organizational Culture and Work Environment

Unit V. Organizational Change and Stress Unit VI. Constructive communication and conflict resolution

Unit VII. Leadership and teamwork

Unit VIII. Organizational learning

Code	INI319	Prerequisites	INI378 INI395 ECO322
Name	Industrial Engineering Project	Co-requisites	None

Credits	Contact Hours
04	44
Categorization of credits	
Math and basic science	
Engineering topic	Х
Other	

Instructor's course name: Jorge Miranda

Text book

Gido, J., Clements, J.P. (2007). Successful project management. (5th ed.). Mexico City: Cengage Learning.

Heizer, J., Barry, R., & Isabel, Pérez de Lara Choy, María. (2014). Operations Management Principles. Pearson Education.

Chain, S.N. (2000). Preparation and Evaluation of Projects - 4b: Edition (Spanish Edition). McGraw-Hill Interamericana.

Chapman, M. (2006). Planification and control of the production. Pearson Education. Meyers, F.E., & Stephens, MP (2005). Manufacturing Facilities Design and Material Handling. Prentice Hall.

Krick, E.V. (2005). Engineering Methods / Methods Engineering (Spanish Edition). limousine

Industrial engineering: standard methods and work design. (2009). McGraw-Hill Education.

Creole, R.G. (2005). Work study. McGraw-Hill Education.

Zornoza, CC, & Cruz, GFR (2006a). Quality management. Pearson Education.

Other supplemental materials

Description

This subject focuses on the development and implementation of the concepts and skills of project management in the solution of problems within the field of action of Industrial Engineering. It includes the processes of identification and selection of projects. The study material will integrate management issues, integration of work teams, so that the student develops the necessary skills to successfully solve Industrial Engineering projects.

Type of course	⊠ Required
Type of course	

Specific goals for the course	
Outcomes of	1. Define the problem and its causes, identifying all its key aspects.
instruction	2. Identify the client's needs to transform them into objectives,
	criteria and restrictions with a high level of compatibility and using
	tools, methods and/or engineering systems.

	 Generate and select the best alternatives with a high level of correlation with the established criteria and restrictions, in accordance with the engineering sciences and considering health, well-being and safety. Justify the selected alternative based on arguments consistent with the established criteria. Prepare reports and transmits oral messages in a clear, coherent and judicious way, classifying the ideas of the topic it deals with, using graphics and appropriate language, fully retaining the attention of its audience. Prioritize engineering decisions before the impact of their consequences in the contexts (economic, environmental and social) with local, regional or global scope. Participate in the planning of objectives and their follow-up until compliance and with efficiency. Interact with team members appropriately, encouraging and considering the ideas of other members while avoiding, mediating and/or resolving conflicts.
	9. Assume appropriate roles within the team based on their abilities and what has been agreed upon, fulfilling commitments within the established deadlines and with adequate quality.
Student outcomes	SO1. Identify, formulate, and solve complex engineering problems by applying principles of Engineering, Science, and Mathematics. SO2. Apply the engineering design process to produce solutions that meet specific needs taking into account public health, safety and welfare, as well as global, cultural, social, environmental and economic factors. SO3. Communicate effectively with a variety of audiences. SO4. Recognize ethical and professional responsibilities in engineering situations and makes informed judgments considering the impact of engineering solutions in global, economic, environmental and social contexts. SO5. Function effectively in a team whose members together provide leadership, create a collaborative and inclusive environment, set goals, plan tasks and meet objectives.

Unit I. Theoretical Foundation Unit II. Project Progress Reports Unit III. MS Project Unit IV. Final project